- w4 =

revonr oocome* (MARAY [5

1a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY

Lol
: %mvmmmuw OF REPORT
b 9 4

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

p 3 1932 ¢

4.

PERFORMING ORGANIZATION REPORT NUMBER(S)
Kaman Sciences Corp. K-89-58U(R)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable) Air Force Studies & Analyses Agen
Kaman Sciences Corporation Y gency
(AFSAA/SAS)
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
1500 Garden of the Gods Rd. Roam 1D 431 Pentagon
Colorado Springs, CO 80907 Washington DC 20330-5420
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
F49642-89-C-0009
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO.] NO. NO. ACCESSION NO.

1.

TITLE (Include Security Classification)

Microcomputer Missile Performance Software System: ASSIGNMENT Computer Software Camponent
- AIM - Maintenance Manual (MM-04) (U)

12.

PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE GF REPORT (Year, \

FROM TO 16 January 1990

16. SUPPLEMENTARY NOTATION

N 92-27783
N

17.

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP YMicrocomputer Missile Performance Software (MPS); (U) Comput

Software Component (CSC); (U) ASSIGNMENT: (U) AIM.

19.

ABSTRACT (Continue on reverse if necessary and identify by block number)

(U) The Microcomputer Missile Performance Software System (MPS) consists of ten integrated
Computer Software Components (CSCs) that are used to assess ballistic missile performance,
and to plan, generate, and evaluate timed laydowns of ballistic missile forces on target
sets, subject to operational and nuclear vulnerability constraints. Within the MPS, AIM is
the CSC responsible for assigning RVs to DGZs and for scheduling missile launches so as to
minimize the span of either missile launch times or RV arrival times. The MPS is designed
to execute efficiently on AT class nucroconputers, running under an MS-DOS operating system.
Over 95% of the MPS software is written in FORTRAN, with tne remainder being assembly code.
This manual provides a comprehensive specification of the AIM CSC and is intended to support]
the AIM maintenance programmer during the MPS's operational lifetime.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uNcLASSIFIED/UNLIMITED [X SAME AS RPT.] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE IND!VIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Major Mancy Snyder 703/695-9018 AFSAR/SAS

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

s,

PU €SILEY)

NLCE}“ {ARE\
STE

qgm F49642- QQQQQQ))

L

ASSIGNMENT

COMPUTER SOFTWARE COMPONENT
- ALM -

MAINTENANCE MANUAL
| (MM-04)

 CDRL ITEM NUMBER A006

K-89-58U (R) 16 JANUARY 1990

Kaman Scienccs Corporation
1500 Garden of the Gods Rd.
Colorado Springs, CO 80907

ASSIGNMENT

COMPUTER SOFTWARE COMPONENT
- ALM -

MAINTENANCE MANUAL
(MM-04)

CDRL ITEM NUMBER A006

K-89-58U (R) 16 JANUARY 1990

PREPARED tw;"@£%:‘~ APPROVED sv% : e -/
TOM SCHWAB TOM LUNGGREN e Wi

. ! [COURE XAt} 4 -
ALM Lead Engineer MPS Program Manager AR i
g og 9 Z Ju tiiie ot i on

v e RULICL STATEMENT 7: - oo amination enly op 517"‘"% ' %%mem

150
X \6% Wash. mc, '-\0330 (z30CT 1992 cor

' A I Lity CoZog)

DTIC QUAT:TY 1207FOCTED 1 (5}

FOREWORD

This is the fourth volume in an
eleven-volume set of maintenance man-
uals for the Microcomputer Missile Per-
formance Software System (MPS). The
MPS was developed by Kaman Sciences
Corporation, under the direction of the

ili

U. S. Air Force Center for Studies and
Analyses (AFCSA/SASM), on Contract
Number F49642-89-C-0009. This par-
ticular volume describes the ALM
Computer Software Component (CSC).

ACKNOWLEDGMENT

The authors wish to express their
deep appreciation to the two U. S. Air
Force Center for Studies and Analyses
(AFCSA/SASM) Contracting Officer’s
Representatives for this effort,

Lt. Col. Arthur T. Hopkins and
Major David W. Knieriem, for their
direction, support, and substantial con-
tributions to the development of the

MPS.

ABSTRACT

The Microcomputer Missile Perfor-
mance Software System (MPS) consists
of ten integrated Computer Software
Components (CSCs) that are used :o
assess ballistic missile performance, and
to plan, generate, and evaluate timed
laydowns of ballistic missile forces on
target sets, subject to operational and
nuclear vulnerability constraints.
Within the MPS, ALM is the CSC
responsible for assigning RVs to DGZs
and for scheduling missile launches so as
to minimize the span of either missile
launch times or RV arrival times.

vii

The MPS is designed to execute
efficiently on AT class microcomputers,
running under an MS-DOS operating
system. Over 95% of the MPS software
is written in FORTRAN, with the
remainder being assembly code.

This manual provides a compre-
hensive specification of the ALM CSC
and is intended to support the ALM
maintenance programmer during the
MPS’s operational lifetime.

Section

1.

INTRODUCTION

1.1

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5

TABLE OF CONTENTS

oo

SCOPE

ooo

oo

MPSOVERVIEW ... it iiiiiieanenennnans
MPSSTRUCTURE .. .iiiiiiiiiiiiiiiiiiiiiiinnnnnnnns
CSCDESCRIPTIONS ...iiiiiiiiiiiiiiiiiiitiicncnsannass
MPSCASES ... i ittt ticteaaeatennnns

oo

PURPOSE ... it iiiiiesennnans
OPTIONS it i ttiieeetienessenscennsans

ooo

5.1.1 Program ALM iiiiiiiiiiiiiiiiiinnannnnn.
5.1.2 Subroutine TRYFLYiiiiitirerieroecnesnononons
5.1.3 Subroutine ASR2TIc.iviiiiiiiteieenesesocanonns

oooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooo

ix

TABLE OF CONTENTS (Continued)

Section Page
5.1.6 Subroutine ASR2T2ciiiiiiiiireeerosancsennn 5-15
5.1.7 Subrountine ADJST]iiiiiiiiiiiereronnenenns 5-22
5.1.8 Subroutine GETSRTciiiiiiiiirtieneeceensnnns 5-22
5.1.9 Subroutine MULSRT ...iieitiiiiiiiiecversennannnn 5-22
5.1.10 Subroutine CHKMLTciiiiiiiirirereneceanans 5-22
5.1.11 Subroutine CSTOUT ...viririiienrenrecescosnnnons 5-37
5.1.12 Subroutine ADJSTS ..c.viiitiiiieerrernnesaennns 5-37
5.1.13 Subroutine CHKSRTcoiviiiiieecrtcecceannns 5-37
52 CONCEPTSANDMODELS ..cciiiiiitiiecncracncsnnnase 5-37
53 MODELLIMITATIONS ...iiiiiiiiiiiiietersnsnscncanens 5-43
8. OUT PU DS ittt ittt teteesessoeeeesssoossesessossscnasssans 6-1
6.1 OUTPUT FILES ..itiitiiiiiiititieeeenesescesanceacanns 6-1
6.2 GRAPHICAL ..iiiiiiiiiiiiteieeeteeenacesecoccssnneans 6-1
8.3 REPORTS ciiiiiiiiiiititeeeeeeecaccoaescscsosacncnnanns 6-1
7. ERRORPROCESSING ...ciiiiitiitrtentecnnscsoccscnscanens 7-1
8. SAMPLE PROBLEMS ... iiiiiiiiiiittteeenresescesssosennens 8-1
8.1 DESCRIPTION ...iiiiiiiieittntteeereneccsoassascsnnnns 8-1
B.2 INPU TS o iiitiiiiiiittieeeconesosesosssosassssscsossnnns 8-1
8.3 EXECUTION RESULTS ..iciitiiteitereersoccosccoannons 8-19
9. COMPILINGANDLINKINGciivittetrteeectccrascnccanes 9.1
9.1 COMPILINGcviuiriireteirtnsecsssscssscsssacsanons 9-1
9.2 LINKING ...iiiiiiiittitrenseressocsossncssscscsnnannns 9-1
10. REFERENCES ...t iiiiiiititetrencestssocescsssssnnnasanne 10-1

Section

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIXH
APPENDIX 1
APPENDIX J

TABLE OF CONTENTS (Concluded)

MODULE LIST

MODULE CROSS REFERENCE
MODULE DESCRIPTIONS

COMMON BLOCK LIST

COMMON BLOCK CROSS REFERENCE
COMMON BLOCK DEFINITIONS
PARAMETER DEFINITIONS

DATA FLOW DIAGRAM SYMBOLOGY
FUNCTION CHART SYMBOLOGY
FLOWCHART SYMBOLOGY

xi

Page

Figure

2-1
2-2

5-1
5-2
5-3
5-4
8-5
5-6
5-7
5-8

5-10
5-11
5-12
5-13

6-2
6-3

LIST OF FIGURES

Page
MPSDATA FLOWDIAGRAMiiiiiiiiiitintnnnnnns 2-3
MPS CSC DESCRIPTIONS (it iiiitetrtrencenennns 2-2
ALMDATAFLOWDIAGRAMiiiiitiitienenennnnns 3-3
ALMFUNCTIONCHART ..t iiiiiiiiiiieieetrerenannnes 3-5
ORIGINSOF ALMINPUTF FILES ... iiiiiiiiettnnrannes 4-1
ALMCONTROLFILEIOPT ...viiiiitiiiteecnenesanans 4-3
RV ALLOCATIONFILEIOPT ..viriiiiiiiiietenensnens 4-6
LAUNCH LOCATIONFILEIOPT ...ciiiitiiienenncnnens 4-8
BOOSTER DATAFILEIOPT ...iiviiiiiiirenencnccannes 4-9
PBY DATA FILE IOPT . .iriitiiiiiretereereneonnsosonns 4-14
RVDATAFILEIOPT ...ciiiiiieininnnns Ceeecretvatasins 4-17
FRATRICIDE CONSTRAINTSFILEIOPT ...cccvve..... 4-20
PROGRAM ALMPROCESSFLOWciiiiiieennnnn 5-3
SUBROUTINE TRYFLY PROCESSFLOW 5-6
SUBROUTINE ASR2TI PROCESSFLOWc....... 5-7
SUBROUTINE PREPAR PROCESSFLOW 5-9
SUBROUTINE ORDMSS PROCESSFLOW 5-11
SUBROUTINE ASR2T2 PROCESSFLOWcccuvvnen 5-16
SUBROUTINE ADJST1 PROCESSFLOW 5-23
SUBROUTINE GETSRT PROCESS FLOW 5-28
SUBROUTINE MULSRT PROCESS FLOW 5-32
SUBROUTINE CHKMLT PROCESS FLOW 5-35
SUBROUTINE CSTOUT PROCESS FLOW 5-38
SUBROUTINE ADJST5 PROCESSFLOW 5-40
TANGENT-PLANE COORDINATE SYSTEM 5-42
ALM STATUSFILEIOPT .. iiiiiiiiiritttieencnnsannann 6-2
AT TACK FILE IOPT ..ttt iiiiietecerenassnnnnnn 6-3
SORTIE FILE IOPT .iiiiiiiiiiiiiitetneneneesssccannana 6-6

Figure

6-4
6-5
6-6
6-7
6-8

7-1

7-3

8-1
8-2
8-3
8-4
8-5
8-6

8-8

8-9

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19

9-2

LIST OF FIGURES (Continued)

Page
TRAJECTORY PROJECTIONMAPccvvneiennn... 6-7
SORTIE MAP ..ottt iiiieeerireeseanneaannens 6-8
ATTACK DESCRIPTIONBYDGZcovvvvvernneennnns. 6-9
ATTACK DESCRIPTIONBY MISSILEcccuveeenent. 6-10
ATTACK DESCRIPTIONBY RV ..oivvviiiiiinninrenannnn 6-11
ALM INFORMATION MESSAGESccvvvvierunaennenns 7-4
ALM WARNING MESSAGES ...ciiivirnninernnnnecennes. 7-5
ALMERRORMESSAGESoviiierrnirinecnnnonennes 7-14
SCENARIO SPECIFICATIONovieirrenneennnennnns 8-2
MPSMAINMENU ...oiiiieriireirnineneersneerennanenes 8-3
MPS MISSILE DATA SET DEFINITION 8-4
MISSILE SYSTEM CONFIGURATIONccvvenennnn. 8-5
BOOSTER DATA PANELS ...ovvvivnierrrinineeennannnes 8-6
PBV DATA PANELS ..0uuiiiiiereriernnereennnaasennees 8-11
RV DATA PANELS et rtanaraeeasnaaeenanaennns 8-15
TIMED LAYDOWN CASE DEFINITION 8-20
LAYDOWN CASE DATAENTRYcccvvvverennnnnnnes 8-21
ASSIGNMENT AND INITIAL SCHEDULING 8-22
ASSIGNMENT RUNOPTIONS ...oiviviniieinnnanennnn. 8-23
LAUNCH COMPLEX DATA ..uvniiiireninneeennnennnnns 8-24
LAUNCH LOCATIONDATA ...vviiiieriiiaieranacenenes 8-25
RV ALLOCATION SPECIFICATIONccvvvvenaannns 8-26
RV ALLOCATIONBYDGZ ...uvviiiierrnnneeennneannnns 8-27
ALMSTATUSFILE ..oiivviviriiiieeerrenaesnnnnasnnns 8-28
ATTACKFILE ..eoviiitiniiiinenaeereenneeesanaeannnes 8-29
SORTIEFILE ...cvvvviiiininnnnnerneesennnseeenneannnss 8-30
ATTACK DESCRIPTION BY MISSILE 8-31
FORTRAN SOURCEFILESivviveruniereennenennnn. 9.2
MAKE DESCRIPTION FILE (ALM.MAK) 9-3

xiv

Figure

9-3
9-4

LISTOF FIGURES (Concluded)

Page
MAKE DESCRIPTIONFILE(X.CMP) ...civvieirnnnennn. 9.4
LINKER RESPONSE FILE(ALM..NK) ...ovvvivennnnn.. 9-4
EXAMPLE DATA FLOWDIAGRAMc.iiiiiiennnnnnns H-1
EXAMPLE FUNCTION CHARTiiriitieterncncnanns 1-2
FUNCTION CHART SYMBOLSiiiiiiittiennennnnnns I-3
FLOWCHART SYMBOLS ...t iiiiitiiittteenncsnnnanaas J-2

XV

SECTION 1
INTRODUCTION

1.1 SCOPE
This manual provides a compre-
hensive specification of the ALM Com-
puter Software Component (CSC) of the
Microcomputer Missile Performance
Software System (MPS). This specifica-
tion describes and explains in detail
ALM’s function within the MPS, the as-
built design of the ALM CSC, and the
implementation of that design in soft-
ware. Specifically, it presents and
discusses:
® What ALM does, and how it does it
(in terms of the physical and mathe-
matical models and algorithms it
employs).
® How ALM is structured and what
components (modules, common
blocks) comprise it.
® How ALM interfaces with other
CSCs and what those interfaces are.

This manual is written with two
audiences in mind. First, and foremost,
this document is intended to support the
ALM maintenance programmer during
the MPS’s operational lifetime in mak-
ing revisions to ALM to correct errors, to
improve efficiency, to incorporate new
capabilities, and to accommodate
changes in the host hardware and

software environments. A secondary

1-1

audience for this manual are those users
who desire more than a casual fam-
iliarity with ALM, and more than the
ability to simply set-up and execute it.
These users typically want a fuller
appreciation and understanding of
ALM’s capabilities und limitations, and
its underlying concepts and models.

1.2 DOCUMENTOVERVIEW
This manual consists of ten
sections and ten appendices organized by
specific topics that are of interest, and
importance, to the ALM maintenance

programmer:
@ Section 1 provides an introduction to,
and roadmap of, the ALM

Maintenance Manual.

® Section 2 presents an overview of the
MPS’s purpose, structure,and pro-

It also
describes the operating system and
hardware configuration for which the
MPS is designed.

® Section 3 provides an overview of
ALM’s functionality, top-level
design, and limitations.

® Section 4 identifies and defines the
ALM input files and discusses how
those files can be created.

® Section 5 outlines ALM’s processing
sequence, procedures and algorithms,

gramming languages.

and provides a tutorial on the
underlying concepts and models that
ALM employs.

Section 6 identifies and defines the
outputs produced by ALM.

Section 7 describes the error
processing performed by the MPS
and describes all ALM error and
warning messages.

Section 8 provides a sample problem
that demonstrates ALM’s operation
and processing options.

Section 9 describes how the ALM
source code can be compiled and
linked to produce executable code.
Section 10 lists all references alluded
to in this manual.

Appendix A identifies and briefly
states the purpose of each ALM
module.

Appendix B provides a module cross
reference. For each module, this
cross reference identifies the modules

1-2

that it calls and the modules that call
it.

Appendix C provides a complete
specification of each ALM module.
Appendix D lists all common blocks
used by ALM and provides a short
characterization of the type of data
contained in each.

Appendix E supplies a common block
cross reference that shows the
common blocks used by each module,
and the modules that use each
common block.

Appendix F identifies and defines all
variables within each ALM common
block.

Appendix G identifies and defines all
parameters unique to the ALM CSC.
Appendices H, I and J present and
define the symbology used in ALM
data flow diagrams, function charts,
and flowcharts, respectively.

SECTION 2
MPS SUMMARY

2.1 MPSOVERVIEW

The MPS is an integrated software
system for simulating the performance
of ballistic missiles, and for assessing
the utility,
survivability of ballistic missile forces in
conducting coordinated attacks in both
benign and hostile environments.
Specifically, the MPS can be used to
determine ballistic missile range
capabilities, post-boost vehicle (PBV)
footprint dimensions and fuel usage, and
reentry vehicle (RV) flight times. It can
also be used to report trajectory state

effectiveness and

vectors, to calculate optimized weapon
allocations, to predict RV fratricide ir a
timed laydown, and to estimate missile
flyout attrition in a launch schedule,
given a pindown attack scenario. In
addition, the MPS can be used to plan,
generate and evaluate optimized
laydowns of ballistic missile forces on
target sets subject to operational and
nuclear vulnerability constraints.
Finally, the MPS is equipped with a
graphics processor that enables users to
produce maps and graphs of missile
performance, effectiveness and laydown
results.

During MPS development, a
number of design features were accorded

2-1

particular attention. As a result of that

precedence, the MPS:

® Is user-friendly and graphics
oriented.

® Provides users direct access t- the
full range of MPS capabilities.

® Maximizes user visibility and control
of the analysis process.

¢ Emphasizes fidelity and realism.
Incorporates a design that facilitates
future growth and expansion.

2.2 MPSSTRUCTURE

The MPS is an integrated system
but
complementary Computer Software
Components (CSCs). Two of these (MMI
and EXEC) are support CSCs that are
invoked every time a user employs the

consisting of ten distinct,

MPS. The remaining eight mission
CSCs (ALM, CAIN, DAMAGE,
GRAPHS, PATRIT, PFRAT, SOADA
and TARGET) are independently
operable, and are capable of being
exercised with user-provided inputs,
output files generated by a prior
execution of another CSC, or user-
modified versions of such output files.

All communications between CSCs
are effected via a set of control, status
and data files. Figure 2-1 identifies all

MPS files and it shows the connectivity
of CSCs through these files. Each
mission CSC interfaces directly to the
EXEC/MMI through control and status
files. The MPS user communicates with
the system via a keyboard and a VDT
that are tied directly to the MMI. Those
files connected to EXEC/MMI with
heavy, double-arrowhead lines can be
created/modified by the user through the

results are provided by various output

devices connected directly to the
GRAPHS CSC.

2.3 CSC DESCRIPTIONS

Each MPS CSC has a well-defined,
and easily-differentiated purpose. A
brief description of each CSC’s purpose,
in terms of the functions it performs, is
presented in Figure 2-2.

MMI. Graphical depictions of MPS
csc DESCRIPTION

ALM Generates timed laydowns of ballistic missile forces that
optimize attack timing objectives subject to operational
constraints.

CAIN Quantifies nuclear constraints on attack structure due to RV
fratricide, and missile flyout attrition resulting from nuclear
pindown detonations.

DAMAGE Calculates the expected installation value damaged inan
attack, accounting for weapon system reliabilities, RV fratricide
and missile attrition.

EXEC Coordinates the activities of all CSCs and superintends CSC
execution.

GRAPHS Produces graphical depictions of MPS outputs.

MMI Provides a user-friendly, interactive panel system that allows

the user to define a case, and supply all required input data.

PATRIT Evaluates the probability of missile flyout attrition in a launch
schedule, given a pindown scenario.

PFRAT Evaluates the probability of RV fratricide in a timed laydown

and optionally adjusts launch times to reduce fratricide.

SOADA Generates DGZs and allocates RVs to those DG2Zs so as to
optimize user-specified damage objectives.

TARGET Estimates missile performance capabilities, evaluates missile
sortie feasibility, assesses a missile’s depressed trajectory
capability, and generates trajectory state vectors.

FIGURE 2-2 MPS CSC DESCRIPTIONS

2-2

STVAS

(o asve vivasevn

(oo sinus aamsuan

WVHOVIO MO1d Viva SdW

SHdvuD

S IO WHIUNON. U
1 AMwIsY NI
- "
Ritl
10

L.

10w NOD

‘I'lﬂuu NOI LY X1 HINDYY

‘I'IE YIVO MOV VSN

vivo 2onvawo] 25]

WOLIAA divi$ MVe .H

{-¢ 34N9Id

T N TR

804238 divis | 55]

413DuYL

wivo Av | SO
YiVO AR | ¥ O
¥iv0 WS008 | (O

WOILINIgB0 315905 | 080 |

SoLvis § 18

s ‘e

wIIX3

Jois 1] 10uannd

ote

e/

SNLviS [SHISIHILIVEYHI OVINUYM | 010 |
re SIMIVMISNOD 111044
jon—
te IT] "y
1lvd SiNivu (SH0D 30
3 .
1%04dm MU .1y | 28) o ™
V10 NOJYIM MIAIRDIN
| W
YiVGQ NOJYIM B0 TNE
[] ouinod
JOMINOD | 011
(000 | woviiv wmoows
\ 4
ﬁ ﬂ :
T > SN1viS s 3uw0s | tv] snivis] i} -
viva A | sco
1) vivo Asy | sc0
2y [¥iv0 4315008 | (€0 |
Q3A3MIv 35vava | 29) Jgveva 1 v
Praviv] e jo— v |
- w i g P
>
(s Jhowanos 10uinod i
,‘l'EH\FE«:.G! nOUYInIIY A] €T } -
snavis [e -
| [010] viva noevim
)
o Ll
1200 momieo [7€ Je—{ vovos
o1 T
1wO43® 102 ¥ivud | 204] ot
[0

vava Nodvin [010

10WANOD _ 53X “

(L i8]

(LS 17 4l

-

o

10

QUVORA I

NOILYMNDI4NDD DSy [160 |

34 IFYO NUSYR

“uve ;U_ ”” _

s3.0n u35n | vo]

PR IE

134 Yanve [20]

Awvug Y I3nve | 10 |

Aw042380 VI [12]

Iv

oo

24 MPSCASES

Fundamental to the informed
employment of the MPS is an
understanding and appreciation of the
concept of a case. The importance of this
concept is reflected in the MPS main
menu which, with only one notable
exception (build data sets), provides the
user with a set of operations (define,
load, execute, graph, and review) for
manipulating cases.

Within the MPS, a case refers
collectively to: (1) a selected set of MPS
functions; (2) the ordered sequence of
CSC executions needed to perform those
functions; (3) all files input to that
execution sequence; and (4) all output
files produced.

The MPS supports three types of
cases:
® Accessibility - an accessibility case
involves the autonomous execution of
the TARGET CSC to generate mis-
sile performance estimates, to assess
missile sortie feasibility, to assess a
missile’s depressed trajectory capa-
bility or to report trajectory state
vectors.
® Nuclear Constraints - a nuclear
constraints case involves the auton-
omous execution of the CAIN CSC to
generate deterministic or proba-

bilistic nuclear environment

2-5

exclusion regions for RVs (fratricide)
or missiles (flyout attrition).

® Laydown Case - a laydown case pro-
vides the user with the option of run-
ning subsets of the ALM, DAMAGE,
PATRIT, PFRAT and SOADA CSCs
in an end-to-end mode to plan, gener-
ate, and evaluate timed laydowns of
ballistic missile forces on target sets,

subject to operational and nuclear
vulnerability constraints.

2.5 MPSOPERATIONAL

ENVIRONMENT

The MPS is designed to execute
efficiently on AT class microcomputers,
running under an MS-DOS operating
system. The baseline hardware config-
uration for which the MPS is tailored
consists of the following elements:

® 80286 or 80386 central processing
unit equipped with an 80287 or
80387 numeric coprocessor.

¢ EGA video display adapter and
monitor.

® 640 kilobytes of random access
memory (RAM).

® 1 megabyte of additional RAM for
use as a graphics data buffer.

e Hewlett Packard Laserjet Series II
printer or Hewlett Packard PaintJet
printer.

® 20 megabytes of hard disk storage.

® One 1.2 megabyte 51" floppy disk
drive.

Although the MPS is targeted for
operation on this baseline hardware, the
MPS is capable of being installed and
executed on a wider class of machines.

To compile, link and execute the
MPS, the following software is required:
® MS.DOS Operating System 3.2 or
above. The system must include the
VDISK.SYS and ANSLSYS install-
able device drivers.

® Microsoft FORTRAN Optimizing
Compiler, Version 4.1 or above.

® Microsoft Macro Assembler, Version
5.1.

As one might infer from the preced-
ing list, the MPS is a combination of
FORTRAN and assembly code, with over
95% of the software being FORTRAN.
Use of assembly code is confined to the
EXEC, MMI and GRAPHS CSCs. The
majority of the MPS FORTRAN code
conforms to the FORTRAN 77 (ANSI
X3.9 - 1978) programming language
standard.

2-6

However, there are a few general

exceptions employed by the MPS to

increase software efficiency and to

improve software maintainability.

These exceptions are:

¢ The use of the INCLUDE statement
to include common blocks in
subroutines.

® The use of * data typing, specifically
INTEGER*2 and LOGICAL*1 data
types to reduce the size of executable
code.

® The use of the Microsoft backslash
and $ edit descriptors to improve
display quality.

® The use of Hollerith constants in data
statements.

® The use of type conversion for
character constants specified in data
statements.

Specific occurrences of these
exceptions are described in Appendix C
for each module.

SECTION3
CSCOVERVIEW

3.1 PURPOSE
Within the MPS, the ALM (Attack

Laydown Model) CSC is responsible for

assigning RVs (Reentry Vehicles) to

DGZs (Desired Ground Zeros) and for

scheduling missile launch times.

Specifically, the ALM first forms missile

sorties that:

° Collectively fulfill, or fulfill as
closely as possible, an input RV
allocation specifying the number of
RVs to be targeted to each DGZ.

° Are individually feasible in the
sense that the sortie is within the
missile’s performance capabilities.

o Individually satisfy user-specified
targeting requirements and
constraints, including: the reentry
angle trajectory to be employed;
the maximum amount of PBV
(Post-Boost Vehicle) fuel to be used
for range extension; and the
minimum exoatmospheric distance
between RVs.

Using the feasible missile sorties
identified, the ALM next constructs a
missile launch schedule that:

L Optimizes a user-supplied attack
timing goal (either minimize RV
downtime span, or minimize
missile launch duration).

3-1

° Enforces minimum time

separations between RVs targeted

to the same DGZ, when those RVs

are deployed from different

missiles. These times are either
specified by the user or read from
the input Fratricide Constraints
Files.

e Satisfies missile system launch

rate constraints.

The ALM CSC can be executed
without previously executing any other
CSCs, but this requires the user to
allocate RVs to DGZs, to gecnerate the
RV Allocation file normally written by
the Allocation CSC (SOADA), and to
specify minimum in-line RV arrival
time separations. In most applications,
however, the Allocation and CAIN CSCs
are run prior to executing ALM. CAIN
is run in mode 2, to generate the
Fratricide Constraints Files that can be
input to ALM.

3.20PTIONS
Operation of the ALM CSC is
controlled by user specification of the
following six options:
¢ In-line RV time separations. These
times can be provided by the user or
the user can direct the ALM to read

these times for user-specified
Fratricide Constraints Files. If the
user elects the input option, then the
user inputs the desired minimum in-
line RV spacing (AT) as a function of
RV number. For example. the user
might specify a AT of 2 seconds
between the first and second RVs
targeted to a DGZ, and a AT of 2
minutes between the second and
third RVs. This single set of ATs is
then employed for all DGZs,
regardless of the height of burst
(HOB) associated with a DGZ.
Alternatively, the user can supply
the name of a CAIN-produced
Fratricide Constraints File for each
HOB employed in an attack, and
direct the ALM to read the minimum,
fratricide-free, in-line RV time
spacings (ATF’s) contained in those
files. Based on the HOB employed at
a DGZ, the ALM will then:
(1) identify the applicable ATF for
that DGZ; and (2) enforce that ATF
uniformly between every consecutive
pair of RVs targeted to that DGZ.
ATF is defined as the minimum,
intra-DGZ RV
separation that ensures avoidance of
RV fratricide due to the prompt
nuclear environments (thermal and

arrival time

nuclear radiation environments and
blast wave environments) that are
produced by an RV HOB detonation.

3-2

¢ Maximum fraction of PBV fuel to be
used for PBV range extension.

® Reentry angle to be employed for
each missile participating in an
attack. If zero is entered, minimum-
energy trajectories are to be used.

® Rotating or non-rotating earth.

® Attack timing goal. Either minimize

RV downtime span, or minimize

missile launch duration.

Space or don’t space RVs a minimum

distance apart exoatmospherically.

3.3 CONCEPTUAL LIMITATIONS
The conceptual limitations of the

ALM CSC are as follows:

® All missiles employed in the attack

are identical.

The number of RVs in an attack must

be evenly divisible by the number of

RVs on a missile; i.e., an integer

number of missiles must be employed

in an attack.

A single HOB must be used for all

RVs targeted to a given DGZ.

3.4 DATA FLOW DIAGRAM

The data flow diagram (DFD) pre-
sented in Figure 3-1 identifies the files
that are input to and output from the
ALM CSC. Furthermore, this figure
indicates which CSCs can generate data
for, or use data generated by, the ALM
CSC. A brief discussion of DFDs is
provided in Appendix H.

WVYY9VIA MOTd YiVvA WV L-E 3¥NOId

aie wE aun way,

()
INW/DIXI
]]
=317
3714 SNLVLS L'y ;7T
SINIVHISNOD y N
€8 Japmivis v - S
seo|l 3INvivany
P / N\ veol 34 vivaned
I sHdwyo | e— 2NN \ 3714
P — £
= = o ELLELEL U g 0| vivay3lsoos
=3- HNINNISSY 8 3713 NOILVDO]1
(" WiV %0 HONNVY (T
| 3I9vnva! -] ¢ | vavos !
_ [pREY:Ri2AE A 1AL : €€| NOILVOOTWVAY ¢ |
rZ3327 or *Z3EZ7
s \ 31 0>
I Liyivd | AN I3 TOYLN
_ 1T
o Y 4ok I
———— / \
/ \ INW/D3X3 __
I 1wvYid | '
! 1 =21~ 7

s ww wn

3-3

Inspection of Figure 3-1 reveals
that the ALM accepts as input the
following seven files:
® Control File (1.14). Prepared by the

EXEC/MMI, this file contains values
that control the performance of the
ALM CSC.

® RV Allocation File (3.3). This file
specifies the number of DGZs, their
locations, and the number of RVs
allocated to each DGZ. This file is
normally written by the SOADA
CSC.

® Launch Location File (0.20). This file
contains the latitude and longitude of
each attacking missile. The file is
generated by the user via the MMI.

® Booster Data File (0.33). Supplies
booster model parameters for the
missile system employed in the
attack.

e PBYV Data File (0.34). Supplies PBV
model parameters for the attacking
missile system, if that sysf;em has a
PBV.

® RV Data File (0.35). Supplies RV
model parameters for the attacking
missile system.

® Fratricide Constraints Files (8.3).
These files are generated by the
CAIN CSC and contain the
fratricide-free, in-line RV time
separations used by the ALM.

The following files are generated by
the ALM CSC:

Status File (4.1). This file informs
the EXEC/MMI and the user of the
success or failure of the ALM
execution. Information, warning and
error messages describe the cause of
any failure.

Attack File (4.2). This file contains
missile launch time and RV
downtime statistics, as well as
individual missile and RV data.
ALM initializes the probability of
attrition, and the probabilities of
fratricide for each RV. The Attack
File can be passed to the DAMAGE,
PATRIT, and PFRAT CSCs.

Sortie File (4.3). This file describes
the sorties performed by each missile;
i.e., it provides the ordered list of
DGZs targeted by each missile.

3.5 FUNCTION CHART

Figure 3-2 illustrates the

functional structure of the ALM CSC.
This figure presents the four-step
process that ALM employs to assign RVs
to DGZs and schedule missile launches.

These steps are:

Read input files. ALM reads the
Control, RV Allocation, Launch
Location, Booster Data, PBV Data,
RV Data, and (optionally)
Fratricide Constraints files.

Form valid sorties. For each
missile, ALM identifies an ordered
sequence of DGZs that can be
targeted. Collectively, these

NVdS

JWILNMOQ

IZINININ

S3d
iNd1no
LU

LYVHD NOILONN4 N1V Z-€ 3[NOId

NVdS
JWIL HONNVY
JZININIW

J11YOS
31vaAITvA

31LHOS
WYO4

HONNVT

SINIL

1snrav

adinvA
WYO4

S31LYOS

ONITNAIHIS HONNV
ANV
ININNOISSV AY

W1v

S3714
LNdNI
aviy

3-5

sorties are designed to optimally
fulfill the input RV allocation.

Adjust launch times. For each
missile, ALM identifies a launch
time. The resultant launch
schedule is designed to optimize

the attack timing objective, and

satisfy weapon system and
targeting constraints.

Write ohtput files. ALM writes the
Attack and Sortie Files.

See Appendix I for a brief tutorial

on function charts, if needed.

SECTION 4
INPUTS

All of the input data required to
execute ALM are provided via a set of
data files. These files are either: output
files generated by a prior execution of
another CSC, user-modified versions of
such output files, output files produced
via the MPS “BUILD DATA SETS”
option, or user-generated (via the MMI)
input files. Figure 4-1 identifies the
seven files input to ALM and indicates
the source of those files.

The first three files listed in
Figure 4-1 can all be created by the user
through the MMI, but the RV Allocation
File will normally be written by
SOADA, the RV Allocation CSC.

The next three files (Booster, PBV
and RV Data) are Missile Data Base

files. These files must be created by the
user prior to executing the ALM CSC.
More specifically, the user must have
created a record in 2ach of these files
corresponding to the missile system to be
used in the ALM execution. These
files/records are created by the user via
the MMI when the “BUILD DATA
SETS” option is selected in the MPS
main menu.

The last file, the Fratricide
Constraints File, is always written by
the CAIN CSC; it is needed only if the
user doesn't want to specify the time
between layers.

In order to amend the set of input
data to the ALM CSC, the maintenance
programmer must change one or more of

FILE FILE NO. CREATEDBY
Control File 1.14 User via MMI
RV Allocation File 33 SOADA CSC (or user via MMI)
Launch Location File 0.20 User via MMI
Booster Data File 0.33 Missile Data Base
PBV DataFile 0.34 Missile Data Base
RV Data File 0.35 Missile Data Base
Fratricide Constraints File 83 CAIN CSC (optional)

FIGURE 4-1 ORIGINS OF ALM INPUT FILES

4-1

these input files. To assist him in this = Output Parameter Tables (IOPTs), show
endeavor, Figures 4-2 through 4-8 are the detailed format and content of the
provided. These figures, called Input- seven ALM input files.

4-2

LJO! A 114 "TOHLNOD W1V Z-¥ HUNDIA

LV 'xe 3|} |9POW 3PIdIIRI PIE JO dWEN £
v 'Xe 9|} [3pow 3pnue) PUZ JO dWeN 4
v 'Xe 3|} |3poW 3pidxIIeI} 3511} JO dWeN l 8
(s)|apow apnuesy
09v ‘Xz | Buineiuos (s)ajy 1o} yied pue 3AlQ 4
asn
[L'0] 4 0} sjapow apiuiel) NivD JO J13QWNN l L
(SE'O# 311 ‘'N\Y SdIN) 31! AY
09V'XZ 13§ ej1eQ 3|IssIN J0 dweN 14
14 13quinu plol3d 3jl} AY l 9
(vE'0# 311} ‘N8d SdW) 31'4 A8d
09V'XZ 135 ejeQ 3|Iss!|Al 40 weN 4
14 19quinu pi0lal 3|l N8d l S
(€€ 0#)1 "1S9'SdW) 3]'4 1315008
09V'XZ 135 ejeQ 3|IssIN 40 dweN 4
i 13qwinu pi1033i 3|1} 1315009 1 v
114 (0z'0# 311) 411°,35@,
09V “3°1 !3]14 UONEIOT YouneT 4o SweN 1 €
yied pue
3ALIP SAPNU| “(E°E# A1) VAY',35€),
09V ‘3’1 13|14 UONEIO||V AY JO dWEN t 14
ovv ‘X2 uondusap ased rd
sV (,95©), =) aweu ase) i 1
‘13N ‘ON3 ‘'ON ‘ON
SLINN SANNO8 LVYWYOA NOi1dI¥IS3a ¥3LINVYVYd | GHODI3Y
g/ d 68/62/90 ‘31va@

$S3D0Vv 1334ig U
IVILININD3S X
IdAL 3T

giLLVYWYO4INN O
Q3LIVNYOS

Ll HIGWON 371
(p4D7,35@,) 314 |0NUOD WIV JWVN 3114

4-3

(panunuo)) LdOI A'T1d "TOULNOD WIV Z-¥ HUNDIA

6ap 6ap

(4°1)

{3°1)

(4°1]

{00°0S + ‘00°0]

(000°L ‘000°0]

LA

/A

/A

94

€94

‘3dA} uodeam ay) uo spuadap
duelisip wnwiuiw 3y ‘uede
ddue)sIp wnwiuiw e jsed| e pasreds
aqisnw say “3NYLH :Beld "aadvds

‘paziuosydufs
aq pjnoys saY J34e| 15214 JO sawny
|eAe “3NYL ! :0eld "OYINAS

"pasn aq p|noys yyuea
Bunejos"3nyL § :beyd "HIYIOY

‘pasn 3q pinoys (0 =) 3|bue Annuaai
Abiaua wnwiuiw Bunedipui anjea
10 (0 <) 3tbue AnuUadY "'YWWVO

‘uoIsudlxa abueu

A8d 10} [9n4 Jo uoipeld XHpyidd
‘SNOILJO NNY

Lt

o9v

yied pue aaup sapnjpu| (€ v#
3|ly) 45°,35€3, "9°1 '3|14 3OS 0 JweN

oL

o9V

"yied pue aAup sapNpPU| (T h# 31Y)
4V ",958), "3'1 !3}14 Xdelly 0 JweN

6

LLV ‘X2

3|1} |3pow 3piduIel) Yip JO dweN

v

(P.1u03)
8

13N 'ON3

SLINN

Sannos,

1VWYO4

NOILdIYDS3d

‘ON
4313NVYVvd

"ON
QYoo

gred

$$300v LDINIg U
TVIININOIS

Q3LlvNYOINN O
Q3LLVNYO4 X

3dAL 34

68/62/90
‘43IBNNN 3114

1A

-31va

(p4D°,35@3,) 3|14 |[0UOD WV JWVN 314

4-4

((Pepn[2u0)) LAOI A'114 "TOHLNOD NIV &-¥ AUNDIA

$33s $23s [0°666 ‘'0°0] 194 ‘0L 13Ae| pue g 19Ae| uUdIMIAQ W} 6

23 $)3s (0666 '0°0] 194 ‘6 49Ae| pue g J3fe} uaamiaq awi| 8

$33s 73 [0°666 ‘0°0) 194 ‘g 13Ae| pue 7 19Ae| UBIM]IQ dwI} L

$33s 13 [0°666 ‘0 0] 194 ' 13Ae| pue g 13/e| UBIM]IQq dwit] 9

$23S 29 [0'666 ,o.c_ 194 ‘g 19Ae| pue G 13fe}] UIIMIIQ BWI| S

$393S $J33s [0'666 ‘0°0] 194 ' 19fe| pue ¢ 19Ae| UBIMIAQ W] v

$J9$ 39 [0°666 ‘0°0] 194 ‘¢ 19fe| pue g 13de| UaIMIaQ AW | €

$335 33 [0°666 0°0) 194 ‘¢ 19fe| pue 7 13he| udamiaq awi| rd

$J8$ $33S [0°666 ‘0°0] 194 ‘2 19he| pue | jahe| udamiaq awi]| L

SYIAVINIIMLIESINIL 4}
W | N3 SaNNos LVWYO4 NOLLI¥I$3a ON ON
S1INN Y3ILIWVHVd | QYODIY

€/€ d 68/6¢/90 -3lvd

$$3DOv 1O3wag O
IVIININDIS X
IdAL 214

aiLlvinyodnn O
Q3LlvWwyod X

'L Y3IGWNN I4
(p4D°,95©2,) 314 |013U0D WV IWVN 114

4-5

LdOI H'TId NOILLVOOTTV AY €% HHNDIA

-) - o8v s|aqe| 3|qe} uonedojje Ay L 6-L
- - (052 ‘] vl ‘opv ‘xiL pajelo||e sAY 40 J3quINN L 9 ©
) <
- - (0L ‘L] vl ‘ovv ‘xi ¥Ie1e Ul SIISSIW SO JIAqWNN { S
0
184
w Y Y [000Z€ ‘0] ‘ovV ‘xi 0 Z ¥sanq 40 1ybB1ay 1 v
L'84 0
w Y Y [000Z€ ‘0] ‘ovv ‘xi L 15inq }0 613 l £
0
0’84
w Y {4 (0000€ ‘0000L-] | ‘Ovv ‘xi 0 uoneaaja puejsi }abie) L Z
- - - 1Z4 21! - |13qe| puejsi 1abise | L L
"LIW | ‘ON3 ‘'ON ‘'ON
SLINN SaNnodg LVYWYHO4 | 11nVvd43d NOI1di¥ds3a ¥31INVYVY | ayOdIN
uLd 68/6L/9 :31vQ@

$$300v 1D3yig O

TVILNINOIS X

aiLitvwygoinn O
Q3LIVINYO4 X
IdAL 3714

€€ “HIGWNN 3T
(vAY' ,3se2,) 3|14 uonedxo|\y AY ‘INVN 3114

(papnpouo)) LAOI AT NOILVOOTIV AY €% JUNDIA

(219en|ea isea| ayl ‘Sz P10l
‘29Q 3|gen|ea 1sow 3y} $aqLidsap
0L pP10331 '3} 'sanjea saljdwt 13pIQ)

(13 }23Yd pInoys WV ‘0L SpPaddxa
J1 seadde |1m abessaw Buiuiepn)

- - [osZ i} £1°'xL1L 0 290 01 pajedojje sAY J0 12quINN 9
- - [z'1] L1'x8 | xapui 1sinq jo 1yb1ay S
bap | bap (o8l '08L-] £84 Xy 0 saaib6ap jewap (3,) apnibuo v
bap | bap (06 '06-] £84°%S 0 saa16ap jewnap (N,) apniiie €
indutiasn = 7
urodpub =
- - [z°0] 2l %L 4 uonejjeysul = @
adfy 7294 4
- - (6666 'L} vl 'x1 0 101d113s3p xapu| L
P10334 uonedo||y 6SZ-0L
13N | 'ON3 ‘ON ‘ON
1IN SaNNo8 1LVWYO04 | 11Nnv43a NOILdIY¥IS3Ia ¥I1IWVYVd | ayod3u
e d 68/61/9 :3lvd

$S320Vv 1D3y¥ig O
TVILNINO3S X
IdAL 3114

Q3LLYWHO4NN O
Q3LLYNYO4 K

€€ "HIGANN IS

(VAY',95©2) 3jt4 uonedo||iy AY JWVN 3114

4-7

LdOT AT NOLLVIOOT HONNVT ¥-# HHNDIA

e
- - (2 'V] LV ‘X1 :(03 sbuojaq ajissiw dnoub -a'1) 1yb1y4 S
w Y {[(00000€ + ‘0'0000L-]| 084 apn|y v
bap 6ap [[oo008L+ ‘000°08L-]| €84 (3.) apmibuo £
6ap 6ap | [000°06+ ‘000°06-] €84 (No) 3pmine 4
(0L °1) 14 (xapuj) 13quINN 3jIssiN L
:6uimoijoy ayy suiejuod z pioday
‘ISTV4 S € J919weled ‘| pi0daYy 4
ayod3y J1USSIN - Lz
w 4 |loo000€ + ‘0'0000L-]| 084 apMn|v £
bap 6ap |[000°08L + ‘000'08L-]| €84 (3.) apnubuo 4
6ap 6ap | (00006 + ‘000 06} £84 (N.) apmney L
:Buimo)joy ayy uleluod | |-z spI1033dY
‘JNYUL S! € 1313Wesed ‘| p10I3Y 4|
ayod3y 3USSIN - 4
- - [4°1] 2 50|is P3ie30|-0 €
- - (ot ‘L) 4| SO|IS J|ISSIW JO JIAQWNN r4
~USSN ‘AdAAINN,
vZv ‘63 !jaqe xajdwo) ydrune L
- - - Qy0d3Y X31dWOD HONNV - L
‘13W ‘ON3 ‘ON ‘ON
SLINA SaNnosg 1YWYO04 NOI1dI4D$3Q ¥ILIWVYEVd | Q40D
68/02/90 :31va

$S3JOVv LD3¥ig U
IVILNINO3S &
3dAL 31

d31LvWYOINN O
Q31ivNYO4 &

0Z'0 ‘HIAWNN I

(477°,35€3,) 3|14 uonedIOT Youne IWVN 3114

4-8

LdOI 37114 VLVA HALS0O0d 9-¥ JUNDIA

- - [4°1) vl pIios 31 “3NYL - ANos1:bey L

- : (sz'tL] vi 131500Q UO S, AY 4O J3GWNN 9

- - (1’0} 14 13)500q U0 S,\8d }O J3qWINN S

- - [oL ‘0] 14 syu3aIy}a0d Heip 4o 1aqunN v

- - (v'1] 4 abeys yuawabeuew A6i1au3 £

- - (vl i sabejs 40 1aquinN 4

114 aweu 1315009 1 LE-2
0€ =azs

- - [ie?] v s13quinu p103as uado jo Aeury €.

- - (o€ ‘0] vl $p10331 uado 4O JAqWINN 4

- - [LE L] v p1033Y ise L l
1IN ‘ON3J ‘ON ‘'ON

SLINN SANNO9 1VYWYO4 NOILdIYOS3a ¥3ILIWVHVd | Q¥0D3Y
6/Ld 68/EL/0L :31va

$$300V 10341 X
VIININO3S O

Q3LLVNYOINN X
a3LLvwyo4 U
3dAL 34

€€°0 ‘YIGWNN 34

(158'SdW) 2114 eyeq 1315008 IWVN 3114

4-9

(panupuo)) LdOI A'I1d VLVA HALSOOH S-¥ HUNDIA

N qi (90 + 3sz'z'00] vy z 9abes - 1sniyl wnnoep L
N qi (90 + 3sZ°'Z'0°0) 12: t abeys - 1snayy wnndep 91
Gys-N | J3s (0’000t ‘0'0] vy t 9beys - as|ndwit >14133ds wnndep !
63/5-N 23 (0000t .o.m_ vy g€ abeys - asjndwi diynads wnniep vl
Bys-N | J9s (0°000L ‘0°0] vy z abeys - asjndwi oyynads wnnoep £l
Bx/s-N)3$ (0°'000L ‘'0°0) Y L abeys - asyndwi 2jnads wnniep 4}
6 q| (90 + 30'L ‘0°0] 12" v abeys - 3ybram L
6 q| (90 + 30°L ‘0°0] 14’ £ abeys - ybam oL
6 q (90 + 30'L ‘0°0} vy z abeys - 1ybiam 6
6 q) (90 + 30'L ‘0°0) vy L abess - ybrap 8 LE-Z
‘13N | ‘ON3 ‘ON ‘ON
<LNA SANNOSE 1LVINYO4 NOILdI¥DSIA WIL3NVEVd | a¥od3
s/ed 68/€L/0L :31vQ

$S3D0V 1D3¥ia X
IVIININO3IS U

ELVNRERIE

Q3iilvWNYOiINN &
aiLlvinyod O

€E€°0 “YIBWNN 313

(LS8°SdN) 3114 ereq 1315009 JNVN 3114

4-10

(ponunuo)) LJOI d'1d VLVA HALS00H $-¥ JUNOIA

295 38 (0’001 '0°0] 12 2 3beys - uonesnp yseod €€

b1)3$ (o'o0L ‘'0°0) vy | abeys - uotteuinp iseo) 43

95 338 (0’0001 ‘'0°0) vy y abeis - awnuing wnwixep LE

pL: 1 pT-14 (0'0001 .o.m_ vy £ abeys - awnuwing wnwixepy (1]

J9$ pE (00001 ‘'0°0] 12 Z 3beys - awnuing wnwixe 6

335 235 (0’0001 '0°0) 12" | abeis - awnuing wnwixep 8¢

Tw Y (o000t ‘00l vy tr abeys - ease ¥x3 X4

zw M [0°000L ‘0°0) vy £ 3beys - ease ux3 9z

W ™M [0'000L ‘0°0] 12 Z abeis - ease ux3 ST

w 4} [0°0001 ‘0°0) 12} | abeys - ease 3x3 14

W M (0001 ‘0°0} 12 y abess - ease aseg £2

w 47 (0001 ‘0'0] 12 ¢ abejs - ease aseg 4

w Y (0’001 ‘0°0] 12: z 3beys - ease aseg 1z

w M (0’0001 '0°0) 12" | abeys - ease aseg 0z

N ql (90 + 3sz°2'00) vy y abeys - 3sniyl wnndep 6l

N qi (90 + 3522’00} vy € abeis - 1snayy winnoep 8l LE-T
‘13N | ON3 ‘ON ‘ON

SUNA SANNO8 1VYOA NOILdIYDS3a ¥ILINVHYY | Q¥ODIY

s/€'d 68/€L/0L :3Lva

$S320V 1O3¥Ig ®
IvILNINO3S O

d31LVWYHOINN &
aillvinyod4 O

3dAL 34

EE'0 ¥IBWNN IS

(159°SdIN) 2|14 ereQ 1335008 JNVN 3114

4-11

(Panupuo)) LJAOI A'lld VLVU HALSOOH 9-¥ HHNOIA

r-

: : (0L ’0°0) vy (ot)ad zs
- - (0L 00) vy (6) @d LS
- . (o't '00] 14 (8 ad 0s
- . (0L '0°0] 14 (£)ad 6V
- - [0'L°00] 1] (9)ad 14
: - (0L '0°0) 12¢ (s)ad> LYy
- : [0L’00] 12} (v)ad 9v
- - [0t ‘0°0] vy (€)ad 114
- - (0L '00] 12 (@©ad 144
- . [0L'00] vy (Vad 34
6 b (0’00t '0°0) 12} Hwij uonesajddde aseyd 1soog 44
s/w s/ (0’000t 00} vy f113013A yoqes yune Ly
63 q| (0 + 352°2°0°0] vy 1y61am pnouys o
23s 295 (0°000L ‘0°0) 12’ awn uosina3(pnoiys 6€
I35 235 (00001 ‘0°0] vy apnime ajeiul 03 3ybiy jo %%_u 8¢
J3s 33$ (000t ‘'0°0] Yy uoneinp yaune| |eJIUIA LE
abeys Juawabeuew
39S J3$ (0°000!L ‘0°0] 149 A613ua j0 IwNUING WNWIUIN 9¢
95 J3s (o001 ‘'0'0] vy p abeys - uoneinp yseod GE
J9$ J3$ (0’00t ‘0°0] Yy £ abeys - uonesnp iseo0) 1’43 {€-2
LIW | 'ON3 ‘ON ‘ON
SLINA SANNOY 1VWNYO4 NOILdIYDS3a YILINVHVd | aHODIY
Sy d 68/€L/0L :31vQ

$$3J0V 1D3dig &
IVIININO3S O

3dAL 3T

Q3ILIVNYOINN X
Q3LLvINYO4 O

€E°0 ‘HIGNNN 3T

(158°Sd) 31'4 eleq 4315009 INVN 3114

4-12

(Papn[ou0)) LdOI A'11d VLVA HALSOO0H 9-¥ HUNDIA

23S pT-11 [0°0009 ‘0°0) ¥y s3aydune| U3aM}aq awil WNWiuln 59

- - (0L ‘'00] vy Avj1qenas Agd/3lIsstN 9

- - (o't ‘00l 12 Aupqenas yuney £9

- - {000t ‘'0°0] vy (01) 13quinu yoe 29

- - [0001 ‘0°0] vy (6) 43qwinu Yoey L9

- - (000t ‘0°0] vy (8) 12quinu yrew 09

- - (0001 ‘0°0] vy (£) 19quinu yoew 6S

- - (0001 ‘0°0} 12 (9) saquinu Yew 8S

- - (000t ‘0°0] vy (S) 1aquinu e LS

- - (000l ‘0°0] vy (v) s9quinu ey 9s

- - [000L ‘'0°0] vy (€) 13quinu yoew SS

- - (0001 ‘0°0] vy (2) 13quinu yoew s
- - {0001 ‘0°0] vy (1) saquinu yoe £S LE-T
‘1IN | 'ON3 ‘ON ‘ON

SLIND SANNO8 LVINYO4 NOILdIYDS3a 4ILIWVHVd | aHOdIY
/s d 68/€L/0L :31va

$$3D00V 10341 X
IVIIN3IND3s O

3dALl 3114

Q3LLVYWYOINN X
giilivinyod O

€0 "¥IGWNNN I

(159°SdW) 314 eyeq 1315009 JNWVN 3114

4-13

LAdOI AT VILVA Afld 9-¥ JUNDIA

»3fqooN- 0
Nd- L
- - 1400 vl (13lqost) 103e31put 3dA} 123[qO 6
3w ut 31j4ed eds - |-
3wy ulidje| deds- |
- - L-40 | vl :beyy uonasnp buneds 8
- - [sz’0] vi 1311 UO S,AY JO 13QWINN L
- - Sz} vl (SrTAON) Ad UO S,AY 4O 13QWNN 9
jjo-pauim
3q ued 3utbua urew }1 "3§1v3
Aisnonuiuod
- - (4°1] vi suing auibua utew 1 3NY1" - LINODT :beyd S
spiemydeq
- - (4°1] vl asou pajunow si Agd §! ‘INYL" - LYANIT :6eyd v
}nouinq 13y e 3duepinb
- - {11] vl 1e)|9)s PapUdIX3 i "INYL - 3AINDT :Beyy 3
. 13ysnd 41 "35IV4’
- - (4°1] vi ia|Ind 1 "3NYL° - 1INd1 :beyy [4
ocv aweu Agd L LE-C
- - (te‘2} 4 0€ = 3zis s1aquinu P1033. uado o Aeny £
: : [og ‘0] 14 $p1033J uado Jo JaqWInN 4
- - (LE ‘L] 14 p10day ¥se L L
‘13N ‘ON3 ‘ON ‘ON
SLINA SaNNosg 1VINYO4 NOIL1di¥DS3a ¥ILIWVHVd | Q¥OI3Y
g/ d 68/€L/0L :31va

$$3DOVv 1D3YIg X
IVIININO3IS O

Q3LLVWYHOINN X
IdAL 314

qQiilvnyod O

vE'0 “HIGWNN I

(ABd'SAW) @114 e1eg A8d INVN 3114

4-14

(panunuo)) LJOI TId V.LVA Add 9V FINDIA

pT-1 pT-1 (009 ‘'0°0) 2] uoneinp jaanauew Juawdho|dapald oY
29s5/6% | J9s/q (0'00L '0°0) vy 31eIMO|} J13ANaUeW Ipniie abesany 6€
23% 33$ (0009°'0°0) Y uotjeinp saanauew apnine abesany 19
SN | 23S (0°000L ‘0°0) 12’ asinduwi d14133dg LE
N qi (v0 +3S2°C°00) vy (S13A3] |enp }t MO)) 1Ny} 3uIbu3 jeixy 9¢
b ql (S0 + 30'L ‘0°0) vy ybiam jany Agd ¢
6 ql (90+30°L '0°0) 12! 1yB1am (K1p) a1npnns A8d vE
LJO0 (»alqo Yi5z) 101ed1pul adAy 13O €€
L w 0 vl (123[qo pug) 101ed1pul 3dA) 13IQO m ” LE-T
‘1IN | ON3 ‘ON ‘ON
SLINA SGNNO8 1VNYOS NOILdI4]53a HILIWVHVd | Q¥ODIH
g7 d 68/€1/0L :31va

$S3IDDV 1D3YIg X
IVILNINO3IS O

3dAlL 3714

J3L1VINYOINN
Q3ilvnyod O

vE'0 ‘HIGWNN IS

(A8d'SdN) 3114 @ied A8d ‘IWVN 3114

4-15

(Papnjouo)) LAOI A'TId VLVA Atd 9V UNDIA

(‘190 yise)
bupeds 113({qo-133ul WNwWIUIN
L
(fqost) o
w Y [90 + 30°L ‘'0°0) Yy Buieds 13lqo-1a1ul wnwikipy 174
I35 235 (0'0001 ‘0°0) 12" uinq uonesedas Agd/131500g 150d Ly ©
33$ pEH {00001 ‘'0°0) Yy 15e0) uoneledas Agd/191500q 1504 9t <
awn uonisuen
pT- M b= 1 [o00L ‘0°0) vy 1y} yb1y-01-momol-01-ybiy Sy
6 Q) [0'000L ‘0'0] vy 1yb1am a1mdNays 1311 ABd 144
295 29s (00001l ‘0°0) Y U014 UOo-uIny }sniyl ybry £y
- - (0001 ‘0'L] vy onelisniyy |aA9f jenqg 44
23s pEL (0°09°'0°0) Y uolleinp 13An3duew yudwAho|dap 1sod Ly LE-2
LIN | 'ON3 ‘ON ‘ON
1IN SANNO8 1vWYO4 NOIL1di¥DS3q HILINVHVL | a40D3Y
g/€ d 68/€1/0L :3lva

$S3IDDV 1D3IYIg X
IVILININO3S (O

IdAL ITH

d31LVINYOINN [
Qiliviwyo4 O

vE0 YIBNNN IS
(A8d'SdW) 21!4 e1eg A8d IWVN 3114

LAdOT AT VILVA AY L¥ HHNDIA

(o1)ad 6l
- - (0L 00 vy (1)ad oL
w ¥ [0°000S ‘0°0] 12’ CED) 6
| 1| [0000€ 0°0) vy PI3IA 8
w 2l (0'000L '0°0) vy ealy aseg L
b Qi (¥0 + 30°'L '0°0) 120 ybam 9
tw/by | zy/a (¥v0 + 30°C°00) vy 1uaY430d disij|eg S
- - 0z ‘0] vl San(ea 1) sA Y AYeWw 40 13quinN v
- - (oL ‘0] 14 sanjea beup jo Jaquiny €
- - (s ‘0] 4 gOHS 40 13qunN 4
ocv aweu Ay l LE-C
- - [LE ‘2] I = 9Zis $JIaqWNU P03 uaddo 4o >mto,w €
- - [og ‘0] vl $p10331 uado 40 J2quINN rd
- - (LEL] vl piodaijse] l l
‘13N | ON3 ‘ON ‘ON
<LNn SaNNOo49 1LYINYO4 NOI1di¥2s3a WILINVEVd Qyod3IY
g/ d 68/€L/0L :3lva

$S300V 1D3via &

IVILININO3S O

IdAL IS

Q3illvWYO0INN [
aitivinygod O

SE0 ‘YIGWNN I

(AY'SdW) 314 e1eg AY INVN 3114

4-17

(panunuo)) LAOI A1l VILVA AY L HHNDIA

6ap 6ap (006 °0°0) vy a|bue yoele wnwiuiw Aye £V
bap bap (0°06 '0°0) vy 3|bue ydene wnwixew AYe 14’
- - (v0 + 301°°00) 12" ones beip-03-y1| wnwixew AYew Ly
- - (o'Lt'00) vy 3UadY4a0) Beup duosiadiy Ayew ov
un ul (0'L'00) 12: ssauybnou adeying 6€
bap bap (0°06 '0°0) Y 3|bue-jjey auo) g€
w> ul (000t ‘'0°0) 12} snipes aseg LE
wd u (000t ‘0°0) 12° snipes IsoN 9¢
(S) GOHS SE
enLVW | ey (00001 ‘0°0] vy (L) 8OHS LE
(o't ‘00 vy Aupiqeral Ay (11
(0L) yen 6C
[0'00L ‘0°0] 14 (1) yoey 114 LE-C
13IW | ON3 ‘ON ‘ON
SLINA SANNoO4 1VYWYO4 NOI1di¥4DS3a ETE N ay0d3Y
£/2°d 68/€L/0L :31va

$S3J0V 10341 X
IVIININO3S [

adAL 374

Q31LVWYOINN &
giililvwyod O

SE'0 :¥ISWNN IS
(ANY'SdW) 3114 ereg AY “JNVN 3114

4-18

$S3J0V 103¥ia X

IVIININO3S [

Q311VINYOINN X

Q3LLvinyo4 O

3dAL 314

SE'0 -YIGWNN I

(AY'SdW) 314 ereg AY (INVYN 3114

(PAPNPu0)) LAOI A1 VLVA AY Ly FHNDIA

2Y) a|qey 1D w Aijua yioe £8

- - fo'L‘00) 2] a|qey D ut Aijuad sy v9

! a|qey 3|bue ydene ul A13ud Yoz £9

H
Gap bap (006 '0°0) vy 3ajqe) 3)6ue ydeye ul A3ud st A’ LE-2
‘1IN | ON3 ‘ON ‘ON
SINA SaNnog LYWYO04 NOILdI1¥DS$3a ¥31INVEVd qyoo3Y
g/€ d 68/€L/0L :31vQ@

4-19

LdO1 114 SLNIVYLSNOD AAIDIY.LVYUI 8- HUNDIA

(wayy asn jou
S30P NIVD ‘LI¥1Vd B 1vHdid 0) passed aie
pue SQW 3y} woJy die g B ‘s 'y sidlaweied)
ANE Avjiqel|as peaysepwWAY 43p1INqG £
yot3 Aupqenal Ay/3|ssiw 13p|ing 4
voL3 Avjpqer|as xajdwod youney 1ap|ing 1 S
voiL3 uoieuy apniaes} d|gemojie - 011V v
Wy W) LAUE 13piinq J0} did £
v'oL3 ajqeuea Awwnp z
pL:13 33$ L AUE) 13p|inq 104 1010 L
v
13 1 v'oL3 PISIA 13
s(Lp)w | ((D)AP pyoL3 | 1unqjoIybiay pajedssanddas - LgOHS ra
f(tw | () voLd 151nq jo ybiay pajedssapiing - LGOHS L £
(v 3q skemje p|noys) apninesy ¢
inohyy 7
4! 6ejj apidlely 10 1n0AL4 4
msiiqeqoid ¢
JAI}RAIISUOD IS} 2
pTRIVIIVIIE &1 I
rd uonesado jo Ipow L 4
osv oL l L
1IN ‘'ON3 ‘ON ‘ON
SLINA SANNo9d LVYWYHO4 NOI1dI¥DSs3d 4ILIWVHYd | Qu0d3Y
g/Ld 68/8/21 :31vd

$$300V 103yi1d X
TVILNINO3S U
idAl 314

aiLLvwyodnn O
d3llvinyod4

£8 ‘HIGWNN I

(404°,9s€3,) 3|t sjutensuo) apiIelj JNVN I

4-20

(panunuo)) LJOI ATIA SLNIVHLSNOD HAIDIYLVHY 8-F JUNDIA

w

w

wy

J)oS

J)as

wy

H)

U

W

J3s

pL: 13

4

v'oL3

votL3

voL3

voL3

v'oL3

. voL3

Sl

Sl

(1N) 4404 = sawn
|je 104 3jes si 3dueysip abuel-ssosd 131eaub e

1@ 13A19731 e ‘ddyuelsip abueis-sson 2}es aing

(IN) 3401 < sawiy ||e 104 34es
s1 anjea yab6.ey siyy uey) abues umop Jayuey
19A19734 e ‘3due)sip 3bues-umop ajes aing

(LN) 4401 = sawy ||e 104 3}es
s1 anjea 1a6.1ey siyy ueyy abueis-dn Joyuej
19A13231 e ‘dduelsip abues-dn ajes aung

ZNLLSS
< duwll} e e 3jessi IdAIddadIe ZINILSS

LWILSS < dwi eje ajes 3aq |!Mm 13ap|inq 3y
se 79 dwes 3y} J1e pawie 13A13331 e ‘L NI]SS

3|bue Aue e - 3jes
aq ||im abuei 13b1ey 131316 e Y1M 13A13I34
l1e ‘(LN) 4401 = sawn |je o} ‘'XVYN9Zad

asn 3iNninj 10j PaAIISAY
sdwi Jo Jaquinu - IN
(3)6ue

Yy 3Yy 104 (L-VN)/(L-1) * 081 'se paiejndjed
uay} aJe sajbue ay) ‘sajbue jo s;aquinu - yN

l

9

1IW

‘ON3

SLINN

SanNnos 1VINYOS

NOI1d1¥IS3Q

‘ON
4313INVvYVd

‘ON
ay0doN

g/ed

$$300V 1DINIg X
TVILNINO3S O

Q31lvWYyOoiINN O
Q3LLVNYO4 X
3dAl 374

68/8/¢1 :31vd
€8 ‘YIGWNN IIY

(404°,9522,) 314 surensuo) apnuIesd JWVN 3114

4-21

(Papnouo)) A' 1A SINIVHLSNOD HUIDIHLVHA 8-V dHNDIA

idAl 374

(4D9°,3522,) 314 sjutenysuo) apnNinely JANVN 34

1>1q 00
gs1>'a (gMv-))dxa + L) = (d
p)
lgsis0
ot
:WJI0} UOXEeS-POOAA
e buisn |13 jo Ayjigeqousd ayy auIwiNIP O}
ejep 0})1} e apinoid sajqersea asayy 13yiaboy
v'0L3 19j13wesed yibuans-H S
wy Wi volL3 340-|1e} A}isuap 104 1313Weled uoisniyip - g v
w Y oLl JUOZ UOISN|IXI JO snipel - ¢ €
ulendd
w Yy voL3 s jeAIAINs Yd1ym anoge abues1abiey - Zg Z v| +
a|qissod (L + WN)
w Ve | oLl SI |RAIAINS Yd1ym dnoqe ‘abuel yabuer - I i «(L-11) + 8
[((yN'L =
v|) 3jbue yiea 1o} pied buimo||o} 3y 1eadal)
345 3q ||IM 13A13I31 3y} ‘4401 1e
w Uy v oL3 XVINZQ < sabuesiabiey jeie- (L) XviNZa
14
P3IIN 3Q |I!M 13A13331 34} ‘4401
W H voL3 1@ NIWLQ . sabuesjabaeyjjere - (L1) NIWLQ £
awn sty e yunudiooy
wiy Wy AR 40 131ud) abues-umopydn - (11) YINDX 4
(L + ¥N)
3%)98 voL3 3w} }sing papualul duIs dwn - (11) 4401 L «(L-11) + 8
(AN 'L =11)
awi yiea 10 spied buimoj|o} ay) 1eadal)]
13N ‘ON1J ‘ON "ON
SLIN SANNOY 1vINYO4 NOI1d141s3a ¥ILINVYVd QoI
g/ d 68/8/2L :3lva
$S3DOV 1D3HIg X Q3LLVWY04INN O
IVILNINO3S O d3LIVWYO4 & €8 ‘HIGWNN I

4-22

SECTIONS§
PROCESSING

In this section, a comprehensive dis-
cussion is provided describing how the
ALM CSC accomplishes its function.
Specifically, a detailed overview of the
processing logic, implemented in ALM,
is provided using flowcharts as the pre-
sentation medium. Following that, a
brief tutorial on the underlying concepts
and models of the ALM CSC is
presented. Finally, an identification and
explanation of any program limitations
is reported. For a discussion of flowchart
symbology, see Appendix J.

5.1 PROCESSING FLOW

The process used to assign RVs to
DGZs and to schedule missile launches
is shown in Figures 5-1 through 5-12
using top-level, functional flowcharts.
However, before proceeding to a
discussion of these flowcharts a brief
overview of the ALM’s methodology is
needed.

- The ALM employs a heuristic,
decision-making algorithm to identify
feasible missile sorties that fulfill (or
nearly fulfill) the input RV allocation
and that satisfy user-prescribed
targeting requirements and constraints.
This algorithm repeatedly sweeps across
the target set from right to left forming

5-1

accessible missile sorties until all
missiles have been assigned. Each sortie
is initially constructed so that it has a
number of DGZs within it (that have not
yet received their full RV allotment)
that is equal to the number of RVs on a
missile. The algorithm then attempts to
construct a feasible missile sortie that
targets each of these DGZs once and that
emphasizes downrange-to-uprange PBV
travel. If a feasible sortie using these
DGZs is not possible, then the algorithm
defers DGZs nearest the target centroid
and tries to form a feasible sortie using
successively smaller numbers of DGZs
until either a feasible sortie is found or it
is decided, based on user-specified rules,
that those DGZs are “outcasts” that
cannot be targeted effectively using the
input weapon system.

To accommodate situations in
which multiple RVs are targeted to
DGZs, the ALM defines and uses the
concept of layers. The n-th RV assigned
to each DGZ is referred to as an nth
layer RV, and the collection of such RVs
is referred to as the n-th layer. Missile
sorties are similarly assigned a layer
number. Specifically, a missile sortie’s
layer number is equal to the lowest layer
number of its RVs.

Missile launch locations are
assigned to missile sorties as follows:
® The number of n-th layer missile
sorties, Nn, is identified.
° The Nn

unassigned missile

downrange-most,

launch
locations are identified.

° Missile launch location are
assigned to missile sorties in a
right-to-left direction. Thisimplies
near-parallel, as opposed to
crossing, missile trajectories.

Once the missile sorties have been
defined, a launch schedule is constructed
that attempts to minimize either the RV
downtime or missile launch time span.
If the objective is to minimize launch
span, then the first-layer missiles are
launched as quickly as possible (either
simultaneously or at the maximum
launch rate), and subsequent layer
missiles are launched to satisfy RV
inter-arrival time and launch rate
constraints. If the objective is to
minimize downtime span, then the first-
layer missile launch times are set
(subject to launch rate constraints) to
achieve simultaneous downtimes for the
first RV deployed from each first-layer
missile, and subsequent layer missiles
are again launched so as to satisfy RV
inter-arrival time and launch rate
constraints.

5-2

5.1.1 Program ALM

The main program (ALM: Figure
Steps 1
through 6 involve reading ALM input
files and checking the input data. ALM
control data, RV allocation data, launch
location data, booster data, PBV data,
and RV data are read from the first six
ALM input files. Then ALM calls
TRYFLY to see if the missile closest to
the target island can drop all its RVs on
the DGZ farthest from the launch
If not, ALM stops
immediately; there’s no point in
allocating RVs if missiles can’t reach the
target island.

5-1) performs 12 major steps.

complex.

If the trial flight succeeds, how-
ever, ALM checks the number of Fratri-
cide Constraints Files supplied in the
Control File. i1 greater than zero, ALM
reads up to two (optional) input files,
extracting the sure-safe time from each
file and associating it with a height of
burst. Next ALM calls ASR2TI to assign
RVs to the target island: this subroutine
is the nucleus of the program and calls
the greatest number of other subrou-
tines in the program. Finally, ALM calls
PREPAR to prepare data for the Attack
File, writes it, and also writes the Sortie
File.

The three major subroutines called
by ALM will be described next, in the

ALM

RCNTRL

Read ALM
Control File.

Read RV Allocation File.

Read Launch Location File.

Read Booster Data File.

__/

RPBVFI

RRVFIL

TRYFLY See if missile closest to target

island can drop all its RVs on DGZ
farthest from launch complex.

POSSIBLE ?

NO

Read P8V Data File.

Read RV Data file.

Pointless to run any further.

FIGURE 5-1 PROGRAM ALM PROCESS FLOW

ALM

Read sure-safe times from

Fratricide Constraints Files
and use as times between

layers.

Assign RVs to target
island and schedule
launches.

PREPAR

Prepare data for Attack File.

Write Attack File.

Write Sortie File.

FIGURE 5-1 PROGRAM ALM PROCESS FLOW (Concluded)

5-4

order they're called: TRYFLY, ASR2TI,
and PREPAR.

5.1.2 Subroutine TRYFLY

TRYFLY (Figure 5-2) projects the
missile silos, and DGZs, onto a plane
tangent to the earth at the target
island’s centroid. The coordinate system
imposed on the plane has its positive X-
axis pointing downrange. The silo with
the maximum X-coordinate is therefore
the one closest to the target island, and
the DGZ with the maximum X-
coordinate is the one farthest from the
launch complex. TRYFLY forms a sortie
consisting of the farthest DGZ, repeated
as many times as there are RVs on a
missile. Then TRYFLY calls CHKSRT
to see if the missile can perform the
sortie. TRYFLY returns a logical flag
that’s TRUE if the missile can perform
the sortie, FALSE if it can’t.

5.1.3 Subroutine ASR2TI

ASR2TI (Figure 5-3) does some
preliminary work before actually
assigning RVs to DGZs. The most
important steps in this phase are to
define the right-to-left order in which
DGZs will be scanned, and the order in
which missiles will be used. The latter
step is performed by subroutine
ORDMSS, described later. ASR2TI calls
ASR2T2 to construct the sorties that
target RVs to DGZs. If requested,
ASR2TT calls SYNTIM to “synchronize”

5-5

the downtimes of first-layer RVs. Note
that true synchronization is possible
only if the time between launches is
zero. Then ASR2TI calls ADJST1 to
adjust launch times and downtimes for
subsequent layers. Finally, ASR2TI
calls FXLYRS to fix the layer number
associated with each RV; i.e., to ensure
that layer numbers and downtimes are
both in ascending order for each string of
RVs going to the same DGZ.

5.1.4 Subroutine PREPAR

PREPAR (Figure 5-4) prepares
data for the Attack File by sorting
missile and RV data. Missile launch
times and RV downtimes are in
ascending order. PREPAR also
computes the launch duration and
Finally, PREPAR
zeros the array containing probabilities
of fratricide for each RV.

laydown duration.

This concludes the description of
major subroutines called by ALM. The
major subroutines called by ASR2TT will
be described next, in the order they're
called: ORDMSS, ASR2T2, and
ADJST1.

5.1.5 Subroutine ORDMSS

ORDMSS (Figure 5-5) projects the
missile silos onto a plane tangent to the
earth at the launch complex’s centroid.
The coordinate system imposed on the
plane has its positive X-axis pointing

TRYFLY

Project all DGZs onto a tangent plane.

Find DGZ farthest from launch
complex: i.e., DGZ with
maximum X-coordinate.

Project all silos onto a tangent
plane.

Find silo closest to targetisland: i.e.,
silo with maximum X-coordinate.

Form sortie in which all RVs
hit farthest DGZ.

m Check sortie; i.e., see if missile

- can successfully deploy alt RVs.

Indicate _trial flight YES
was possible.

Indicate trial flight

Successtul? was impossible.

RETURN To ALM (Figure 5-1).

FIGURE 5-2 SUBROUTINE TRYFLY PROCESS FLOW

ASR2TI

Loop Over DGZs
r - GER GED GED GED AN GED GED GEn GEE G aEb G - o GED S eI GEb GM G e D WE GE o -y ﬁ
| I
{ : 1
| Zero number of RVs assigned to DGZ so far. Clear flag, l i
| indicating DGZ is not an outcast. 1
i |
! €nd DGZ Loo |
h D unis A oSSR O D G Ak GER GUER IR TR G J

m Determine which DGZs are the

vertices of a convex polygon
enclosing the targetisland.

Loop Over Missiles -

(U e MD GR wn D R D R G m Gmn S

Loop Over RVs on Missiles

(e e e ok o o e e e e s e

i
| Set downtime to absurd value (-1.0).
i

|

~-—-—-—-———-—_q

|
i
I
|
-

P
12
i<

Prepare list of DGZs so target
istand can be “swept” from right
to left.

strip, from right to left).

FIGURE 5-3 SUBROUTINE ASR2TI PROCESS FLOW

e en an an e GRS S Gn G e -n ow en o

-ss-ooj ———————— -——---_——-—----d

Prepare list of missiles in the order
they should be used (in horizontal
strips from front to back: withina

ASR2TI

Assign RVs 1o DGZs.

if the span of RV downtimes shouid
be minimized, do so0. Downtimes can
be synchronized only if the time
between launches is zero. Not
“synchronizing” RV downtimes
means the span of launch times will
be minimized.

Adjust launch times and down-
times for subsequent layers.

Fix layer numbers in the string of RVs
going to each DGZ; i.e, ensure layer
numbers and downtimes for a string
are both ascending sequences.

RETURN To ALM (Figure 5-1).

FIGURE 5-3 SUBROUTINE ASR2TI PROCESS FLOW (Concluded)

5-8

PREPAR

Loop QuerMissiles | _ _ _ - _ _———— ————————

r 1
! Copy data for each missile USED from arrays for ALL missiles in launch !
i |
complex.
i l
[. |
End Missile Loo
Loop Over Missiles Used
r -_ GEE A b Gl T T Gy S U s GEE oD G F " GER GHN GED GNP QU oEh G GEP A - ol aEp o
| — Y |
i Sort used missile data so launch times are in ascending order. i
I _ I
! End Used Missile Loop _:

Define earliest and latest launch times (first and last times in sorted
array). Compute launch duration ({latest-earliest).

LoogOver Missiles Used
r— S G Glh AID GED AN GED GpS A GED o aEs oER s -------—---—---ﬂ
Loop Quer RVs per Missile

r- -— e e s -—--—-————-——-1

Copy data from 2-dimensional arrays for RVs and missites, and
1-dimensional arrays for DGZs, to 1-dimensional arrays for RVs. Aiso,
zero probability of attrition for each RV.

End RV Loop

r——————

!
|
|
I
)
i
Jd

r———_———_-—

le Loo

v

®

FIGURE 5-4 SUBROUTINE PREPAR PROCESS FLOW

5-9

PREPAR

! End RV Loop '

gl |

Sort arrays of RV data so downtimes are in ascending order.

r .
l
|
l

v

Define earliest and latest downtime (first and last times in sorted
arrays). Compute downtime duration (latest - earliest).

Loop Quer Maximum Numberof _ _
Frratricige Probabilities

-—————---——-—-ﬂ

Set the probability of fratricide for each RV, due to each preceding
RV, to zero.

r——-——

End Loop__Ozgr_M.gximum_Nim‘ge_r -
of Fratricide Probabilities

-——-—--——---——J

RETURN

To ALM (Figure 5-1)

FIGURE 5-4 SUBROUTINE PREPAR PROCESS FLOW (Concluded)

5-10

ORDMSS

ENTER

Project missiles in launch complex onto a
plane tangent to the earth at taunch
complex’s centroid. For now, negative
X-axis points to targetisiand’s centroid.

Loop Over Missiles

r——--———————-—— ——------__-—--ﬂ

Invert signs on both missile coordinates. Now positive X-axis
points to target isiand and Y-coordinates decrease from right to
left, just like DGZ coordinates. Clear flag, indicating missile hasn’t
been used yet.

Prepare list of pointers so missiles
can be accessed in descending order
of their X-coordinates; i.e., from
front to back.
Loop Over DGZs

P—-—-————-——---———-————q

| i

! Zero the number of RVs i

! assigned so far. |

| |

lEnd DGZ Loop !

-

. e W

Define index for first missile
touse: FIRST=1.

l
®

FIGURE 5-5 SUBROUTINE ORDMSS PROCESS FLOW

5-11

ORDM:SS

Zero counter of DGZs that need at least one more RV.

e Bt R T

Increment counter of DGZs that need at least one
more RV.

---——-_—-ﬁ'_

GED s SEn AN SEN SEp GEi czn IR CER GHP TIN CED D TEe GAD GNP AR GER @D

| . o X)

LEnd G2 Loop_ _

Need less than
a full missile
load?

NO

Compute number of missiles needed for current layer: integer divide
number of DGZs that need an RV by the number of RVs per missile. Call
the quotient NMCLAY.

Compute index for last missile to use in current layer:
LAST = FIRST + NMCLAY-1.

FIGURE 5-5 SUBROUTINE ORDMSS PROCESS FLOW (Continued)

5-12

ORDMSS

Loop Over Missiles in Current Layer

r—-—-—— ----- - ey - e o am s an - -—-—-—ﬂ

Sort pointers so missiles in current layer will be used from
right to left; i .e., with Y-coordinates in decreasing order.

Compute number of RVs in current layer: multiply number of
missiles in current layer by number of RVs per missile.

v

1]

o
1o
E:]
o

r DGZs

Does DGZ
need an RV?

increment number of RVs assigned so far to DGZ. Decrement number of
RVsin current layer.

Used all Rvsin
layer?

e e
e — e ==

NO
End DGZ Loop

R |

FIGURE 5-5 SUBROUTINE ORDMSS PROCESS FLOW (Continued)

5-13

ORDMSS

Compute index for first missile in next layer:
FIRST = LAST + 1

Go pick missiles for next layer.

O

Define number of missiles and RVs that will actually be
used.

R bkttt |

i /
Zero number of RVs assigned to the DGZ so far.

| I

RETURN To ASR2TI (Figure 5-3).

FIGURE 5-5 SUBROUTINE ORDMSS PROCESS FLOW (Concluded)

5-14

downrange (towards the target island),
and the edge of the launch complex
closest to the target island is considered
the “front” edge. ORDMSS prepares a
list of pointers to the missii so they can

be accessed in front-to-back order.

ORDMSS assigns missiles layer-
by-layer. The missiles used for a layer
lie in a “horizontal” strip (i.e., a strip
parallel to the Y-axis) and are used in
right-to-left order. The number of RVs
in a layer equals the number of DGZs
that still need at least one more RV. The
number of missiles in a layer is the
integer quotient of the number of RVs in
the current layer divided by the number
of RVs per missile. A counter associated
with each DGZ is initially cleared, and
incremented each time an RV is
assigned to the DGZ. ORDMSS resets
these counters to zero so they can be
used again to actually assign RVs to
DGZs later on.

5.1.6 Subroutine ASR2T2

ASR2T2 (Figure 5-6) forms sorties
for all missiles to be used, by repeatedly
sweeping across the target island from
right to left. The candidates for a sortie
consist uf the first n DGZs it encounters
that need at least one more RV, where n
is the number of RVs on a missile. There
are two main types of sortie: single-
layer and multi-layer. In a single-layer
sortie, each DGZ appears only once,

meaning it is attacked by an RV from
one and only one layer. In a multi-layer
sortie, at least one DGZ appears more
than once, meaning it is attacked by RVs
from two or more layers.

If ASR2T2 forms a single-layer
sortie, it sequentially checks to see
whether the next missile to use can
perform one of the following four
variations of a single-layer sortie:
uprange, split, crossrange, or
downrange. If the missile can’t do any of
these sorties, ASR2T2 forms a multi-
layer sortie from the single-layer sortie
by eliminating a DGZ and reassigning
its RV to one of the remaining DGZs.

If ASR2T2 forms a multi-layer
sortie, it checks to see whether the next
missile to use can perform the sortie (or
If not,
ASR2T2 forms a new multi-layer sortie
by eliminating a DGZ and checks the
new sortie.

a couple of variations of it).

If a sortie is reduced to just two
DGZs, or if a sortie wastes RVs, one of
the DGZs is marked as an outcast. Then,
ASR2T2 tries to form another sortie.
With the outcast ne longer considered,
perhaps a feasible sortie can be formed
after all. If a partial missile load is
required at the end, ASR2T2 calls
MOPUP to use the remaining RVs as
efficiently as possible.

5-15

ASR2T2

Prepare pointer to ordered list Start at target
of DGZ indices: ID=1. 1sland’s right edge.

!

Prepare pointer to ordered list
of missile indices: IM = 1.

Get current missile index from
list: JM = ORMSLS (IM).

Count number
of RVs needed.

More than
half a missile
load?

Go get DGZs
for next sortie.

Is current DGZ
right most
DG2?

Go mop up.

NO

Reset pointer to target island’s rightmost DGZ: ID=1.

Go count number
of RVs needed again.

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW

5-16

ASR2T2

Get asortie; i.e., a list
of DGZs in uprange order.

Pick height of burst for sortie’s first DGZ as
height of burst for all DGZs in the sortie.

v

Add time between launches to previous launch
time, yielding current missile’s launch time.

!

Are DGZs in
sortie all
unique?

Go check muliti-
layer sortie.

Check single-layer sortie.

Did all RVs
reach their
DGZs?

Go store good
sortie data.

Go form split sortie.

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Continued)

5-17

ASR2T2

Form split sortie from uprange
sortie.

Check sortie.

.

Go store good sortie
data.

reach their
DGZs?

Form crossrange sortie.

m Check sortie.

Did all RVs
reach their

Go store good
DG2Zs?

sortie data.

Form downrange sortie.

Go check
sortie.

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Continued)

5-18

‘ ASR2T2

m Check downrange sortie.

Did all RVs
reach their
DGZs?

Go store good
sortie data.

Reform uprange sortie
from downrange sortie.

Form muiti-layer sortie by deleting
one DGZ and reassigning its RVs to
another DGZ.

Check multi-layer sortie.

Did all RVs
reach their
DGZs?

Go see if sortie
is wasteful.

Count number of unique
DGZs in sortie.

Go check number of
unique DGZs.

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Continued)

5-19

@ ASR2T2

More than 2
unique DGZs?

Go form a new
multi-layer sortie.

Go mark one of the
DGZs as an outcast.

Check for wasteful sortie; i.e.,
number of extra RVs assigned to DGZs
is more than haif a missile load.

Is sortie
wasteful?

Go store good
sortie data.

YES

Cast out DGZ that's farthest
from target island’s centroid.

Undo failed sortie: decrement launch
time and number of RVs assigned so
far to DGZs in failed sortie.

Go count RVs needed (outcast
0 will be ignored).

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Continued)

5-20

v ASR2T2
% Store good sortie data.

Proceed to next missile: IM=iM + 1.

’

Is there
another
missile?

Go return.

the left of the leftmost DGZ in the sortie.

Use RVs on tast missile as
effectively as possible.

RETURN To ASR2TI
(Figure 5-5).

Go use next ° m Move DGZ pointer to DGZ immediately to

missile.

FIGURE 5-6 SUBROUTINE ASR2T2 PROCESS FLOW (Concluded)

5.1.7 Subroutine ADJST1

ADJST1 (Figure 5-7) adjusts
launch times and downtimes for all
layers beyond the first. When the user
elects to minimize RV downtimes, then
just before ADJST1 is called, ASR2TI
minimizes the span of downtimes for
first-layer RVs (if the time between
launches isn’t zero), or synchronizes the
downtimes (if the time between launches
is zero). ADJSTI1 examines downtimes
layer by layer, postponing launches if
necessary, so the correct time between
layers is maintained.

This concludes the description of
major subroutines called by ASR2TL
The major subroutines called by
ASR2T2 will be described next, in the
order they’'re called: GETSRT,
MULSRT, CHKMLT, and CSTOUT.

5.1.8 Subroutine GETSRT

GETSRT (Figure 5-8) repeatedly
sweeps across the target island,
gathering DGZs that need at least one
more RV. The number of DGZs needed
for a sortie equals the number of RVs on
a missile. DGZs marked as outcasts are
ignored during sweeps. If there aren’t
enough DGZs to complete the final
sortie, GETSRT assigns extra RVs to the
most valuable DGZs in the partial sortie
just formed.

5.1.9 Subroutine MULSRT

MULSRT (Figure 5-9) forms a
multi-layer sortie from a single-layer (or
simpler multi-layer) sortie. It does so by
eliminating one DGZ and reassigning its
RV(s) to the remaining DGZs. The DGZ
eliminated is the one furthest from the
sortie’s vertical midline.

5.1.10 Subroutine CHKMLT

CHKMLT (Figure 5-10) checks to
see if a missile can perform a multi-layer
sortie. The sortie is first performed by
moving uprange; any DGZ assigned
more than one RV is hit by consecutive
RVs, before proceeding to the next DGZ.
If the current missile can’t perform the
sortie, CHKMLT gives up. If the missile
can perform the sortie, CHKMLT checks
the time between layers in the sortie. If
they’re acceptable, CHKMLYT returns; if
not, CHKMLT tries two variations of the
uprange sortie that increase the time
between layers.

The first variation moves uprange,
hitting each DGZ only once. Then the
PBV is instructed to return to the
beginning and sweep uprange again,
hitting DGZs that get another RV. This
is repeated if necessary. If the missile
can perform this variation, CHKMLT
returns. If not, CHKMLT forms a second
variation.

5-22

ENTER ADJST1

Find highest layer
among RVs on all
missiles used.

Beqn Loop Over Layers

ED GNP IR LT GED SED GER GINl AL MLF QI TR IR GED GED NG GNP aEn e -——’

Use
Fratricide
Constraints

GTBLYR

Get time between
layers from list included
in Control File.

A

Use larger of time between launches and time
between layers as time between layers.

Begin Loop Over Missiles Used. | _

Use
Fratricide
Constraints
Files?

_—————-—-—-—————-————---———————-——|

s |

FIGURE 5-7 SUBROUTINE ADJST1 PROCESS FLOW

5-23

v ADJST1

GTBLY?2 Use sure-safe time as

time between layers.

Use larger of time between launches and time
between layers as time between layers.

l‘—G
Zero RV counter and set smallest downtime

difference to absurdly large value.
Begin Loop Over RVs on Missile L

r——-—-—-———-——

}
I
1
I
l
I
|
|
|
l
|
|
I
|
J

ENPREV

Find RV in previous layer
that attacks same DGZ.

Found
Previous RV?

=0

— e e GEA U G ms GES G G TP GHD GED GNh GED GIG WED GED WD GNP SIS Smn VIV SN W SRS GNP MR GUS ER MR I M GEe G @R WS MAm G GEm dm e e
oMb M s GER GNS Chv @A TED GEn GN6 GEP WD D SR SN MAS GND G GRS GER GRD NS GED INn R SN S Mm@ TR GES MIN GEn Mm MEm fER Em S e e
-— s GED D H GNF WED WA GEN Gme SIS WG MIE MER SUD M WS GIN QNS AV NN TES GEb IS mIn SED SR MR LS MR SN NS GES MR G SUR Mm mm SR = eum

FIGURE 5-7 SUBROUTINE ADJST1 PROCESS FLOW (Continued)

5-24

ADJST1

NO

Are
RVs on different

missiles?

o GER GNP GED NS WP TR DN SEP TR IR aED S ane - SEE G G GED GNP NS Gpn CUF WL GAD GNP GNP GRD IR UR GER WER D =R =
lllllllll l"l‘lllll""I""l'lll'
oEn GEP VED WAN GHD WSS G SR GED GES GNP M GID IR SED SER S l"""'l'l"J
|
@ |
4 |
2
b 1
4
E 1
Co . "
% m_:n. <
- v — —
c c v @ T
3 v LA o i
o o = -]
© = Sc q |
g2 |5 _
£5 m |
Wm S 2
N Cc o —
> w0 2 [
x 3lp o
- g o @
S 1 ° g l
5O b |
0% 2
g ® |
E c)
3 £ !
c "
- [1] —
c -
@ .mau \
E a.
bl |
bt)
4 |
£ Q
ol
(]
|
21
he)
n_
w |
CGEL WS IS Gk "IN QUSSR L

FIGURE 5-7 SUBROUTINE ADJST1 PROCESS FLOW (Continued)

5-25

ADJST1

Any RvVs
to adjust?

=

Compute adjustment: subtract smallest difference
in downtimes from time between layers.

v

Is adjustment
>0.001?

Define last missii=
to adjust to be
current missile.

Define last missile
to adjust to be last
missile used.

15 time between
launches 0?

Begin L issi
,._9.'._°299".°.'£"25".“____ - —_————
| |
: ADJSTA Adjust launch time :
i and each RVs "
i downtime. "
I - |

- ED SN G GED SN GER GEE GNP SED EED GID CND GEL GED GID ARG UG GED mEn GHS SGnS GMb GER GEE GRS NS Gl GED GNP GNp SR GEN GED GrS MAD GNL LED GED NS GNP CuR CHN m =
. O AR NS Y GEL NG SND GUS WD SIS GER GNP GED GED GEL GED GES GED GED SND AL GIU AR AND WP SED SED GLN G AID GED SIS NS MO GIN GEG GNS SN AN WIS GIM GDE IR &

FIGURE 5-7 SUBROUTINE ADJST1 PROCESS FLOW (Continued)

5-26

ADJST1

r————-

End Missile Loop

FIGURE 5-7 SUBROUTINE ADJST1 PROCESS FLOW (Concluded)

5-27

®¢__ Reset pointer so rightmost DGZ is the current DGZ.

GETSRT

Count RVs needed by DGZs
from current DGZ through
leftmost DGZ.

Need more
than ; the RVs
on a missile?

Is current DGZ
the ri%htmost
0Gz?

Prepare pointer used to stc - sortie data in lists.

.
©

FIGURE 5-8 SUBROUTINE GETSRT PROCESS FLOW

5-28

GETSRT

1s DGZ an
outcast?

Has DGZ
gotten all RVs
asslgned or
more?

Add DGZ to sortie.

|

J

Increment pointer 1o sortie lists.

o]

v

increment DG2Z pointer.

'

Is sortie
complete?

At or beyond
target isfand’s
left edge?

FIGURE 5-8 SUBROUTINE GETSRT PROCESS FLOW (Continued)

5-29

? GETSRT

Reset pointer to targetisland’s rightmost DGZ.

Try to assign RVs from
subsequent layers to DGZs in
the sortie.

Any RVs still
left?

YES

Add extra RVs to most
valuable DGZs in the sortie, to
use up missile load.

©

FIGURE 5-8 SUBROUTINE GETSRT PROCESS FLOW (Continued)

5-30

GETSRT

Write warning message in Status File.

Abort run.

Sort lists of sortie data so DGZs
- are in uprange order.
% Count unique DGZs in sortie.

FIGURE 5-8 SUBROUTINE GETSRT PROCESS FLOW (Concluded)

5-31

MULSRT

Compute sortie's mean Y-coordinate.

Find DGZ furthest from mean
Y-coordinate.

Count the number of times the furthest DGZ appears in the sortie.

T

Delete each occurrence of the furthest DGZ, and associated entries,

from the lists defining the sortie.

Decrement the number of RVs assigned so far to the deleted DGZ.

Count the number of unique
DGZsin the sortie.

Clear flag associated with each unique DGZ, indicating it hasn’t been
reassigned an RV from the deleted DGZ.

FIGURE 5-9 SUBROUTINE MULSRT PROCESS FLOW

5-32

-

Beqin Loop OuerNumber of Rys_ _ _
Assigned to Deleted DGZ

Form lists of unique DGZs in sortie,
number of times each DG2Z
appears, and starting layer for
each DGZ.

Examine unique DGZs that haven't been reassigned an RV
from the deleted DGZ. Count the number of DGZs that need
at least one more RV.

is # of DGZs
>0?
YES

Find LEAST valuable DGZ among unique DGZs that haven’t
been reassigned an RV from the deleted DGZ, and that still
need at least one more RV.

| find MOST valuable DGZ among unique DGZs that haven’t
'[been reassigned an RV from the deleted DGZ.

MULSRT

- ey M R D s D Gh e Gh G SR SR R S e e e

FIGURE 5-9 SUBROUTINE MULSRT PROCESS FLOW (Continued)

5-33

MULSRT

hasn’t been reassigned an RV from the deleted DGZ; i.e.,

prepare for a new pass.

Set flag corresponding to DGZ just found, indicating it has
been reassigned an RV from the deleted DG2.

.

Increment number of DGZs in sortie.

Reset flag corresponding to each unique DGZ, indicating it]
i
|

Append DGZ just found
to sortie.

r———-—-———_————————————————-—--————-—————-

e e e e e e e e e e = e o - - = - = - — - = — = — - —

End RV Loop

FIGURE 5-9 SUBROUTINE MULSRT PROCESS FLOW (Concluded)

5-34

CHKMLT

Form uprange sortie.

See if ~ ssile can do sortie.

Check downtime differences for
all Rvs attacking the same DGZ.

Differences
Acceptable?

Form sortie that moves up-
range, back to the beginning,
and uprange again.

FIGURE 5-10 SUBROUTINE CHKMLT PROCESS FLOW

5-35

CHKMLT

See if missile can do sortie.

NO

FMABBA

form sortie that moves uprange, turns
around, and moves downrange.

See if missile can do sortie.

NO
w Form up-range sortie again.
EXIT

FIGURE 5-10 SUBROUTINE CHKMLT PROCESS FLOW (Concluded)

5-36

The second variation moves
uprange, hitting each DGZ only nce.
The PBV is instructed to turn around
and move downrange, hitting DGZs that
get another RV. This is repeated if
necessary.

If the missile can perform this
variation, CHKMLT returns. If not,
CHKMLT reforms the original uprange
sortie, indicates it’s a successful sortie
even through times between layers are
incorrect, and returns.

5.1.11 Subroutine CSTOUT

Subroutine CSTOUT (Figure 5-11)
marks a DGZ as an outcast, so it is
ignored in any subsequent sweeps.
Within CSTOUT, DGZs are divided into
two types: vertices of the convex polygon
enclosing the target island, and interior
CSTOUT scans the current
sortie, looking for the vertex furthest
from the target island’s centroid, and the
interior point farthest from the centroid.
If CSTOUT finds a vertex, that DGZ is
marked as the outcast; otherwise the
DGZ that’s the furthest interior point
becomes the outcast.

points.

This concludes the description of
major subroutines called by ASR2T2.
The last subroutine to be described by
flowchart is ADJST5, which minimizes
the span of downtimes for first-layer
RVs,

5-37

5.1.12 Subroutine ADJSTS

ADJST5 (Figure 5-12) examines
all missiles used, finding the first-layer
missiles. These are the missiles whose
first RVs to arrive are the first to attack
their respective DGZs. ADJST5 forms
two lists corresponding to the first-layer
missiles it finds. The first list contains
launch times and is sorted in
DESCENDING order. The second list
contains times-of-flight for the first-
layer RVs and is sorted in ASCENDING
order. By pairing shorter times-of-flight
with later launch times, and longer
times-of-flight with earlier launch
times, the span of downtimes is
minimized.

5.1.13 Subroutine CHKSRT

CHKSRT provides the ALM
interface to the TARGET CSC modules
that are linked to, and used by, ALM to
CHeck SoRTie feasibility.

This concludes the description of
ALM’s most important subroutines.
Detailed descriptions of all subroutines
can be found in Appendix C.

5.2 CONCEPTS AND MODELS

The most important concept under-
lying the ALM is shown in Figure 5-13,
which illustrates the tangent-plane
coordinate system used to specify the
positions of DGZs and silos. This figure
defines and illustrates the terms “left”,
“right”, “? -wnrange”, etc., that have

CSTOUT

Set distance of DGZ furthest from target island centroid to
absurdly small value. Also set distance of furthest vertex to

same value.

Clear vertex index, indicating a DGZ in the sortie that's also a
vertex hasn't been found yet.

Begin Loop Over DGZs in Sortie

)
!
i
I
i
|
I
i
I
I
!
|
i
l
|
|
J

|

form norm of vector from
origin to DGZ; i.e.,
distance from centroid.

Is distance NO
> furthest

DGZ distance?

Update furthest DGZ distance.

“|
®)

FIGURE 5-11 SUBROUTINE CSTOUT PROCESS FLOW

5-38

r——————————-————-—-

En GZ Loo

CSTOUT

Is distance NO
> turthest ——
vertex

distance?

Update furthest vertex distance.

Make furthest
vertex the outcast

YES

Make furthest
DGZ the outcast

Found Vertex?

Write information message in
Status File indicating DGZ was
cast out

FIGURE 5-11 SUBROUTINE CSTOUT PROCESS FLOW (Concluded)

5-39

ADJSTS

Prepare pointer 1o lists that will contain the missile index
and the launch times for each first-layer missile.

1
I
I
i
I
|
I
I
|
|
I
i
)
)
l

J

Begin Loop Over Missiles Used _ _ .1.

FIRST LAYER
MISSILE?

Store missile index and faunch time in lists.

4
Increment pointer.

G

D GW oW o WD G s G AE EE D G R A R R P W W e s

emm e rrc e ———————-—-

L End Missile Loop _

__SORT /
Sort list of launch times
in DESCENDING order.

Sort list of missile indices so downtimes of fir 3V to
arrive from each missile are in ASCENDING order.

l

FIGURE 5-12 SUBROUTINE ADJST5 PROCESS FLOW

5-40

ADIJSTS

Compute adjustment: subtract missile’s launch time from
entry in sorted list of launch times.

Adjust launch time
and RV downtimes.

L End Missile Loop

RS |

FIGURE 5-12 SUBROUTINE ADJST5 PROCESS FLOW (Concluded)

5-41

-X (Uprange: "NORTH")

—~ ™ =" Back

LAUNCH 7

COMPLEX 6

= = = = = Front

Numbers beside silos indicate order
in which missiles are used; i.e., in
horizontal strips from front to back.
Within each strip, missiles are used
from right to left, the same direction
as the sweep across the target island.

((
)

Target istand’s centroid is the origin

TARGET .

ISLAND of the coordinate system.
<Y - — + Y
Left: “WEST” Right: "EAST"

Sweep from right to
left to form sorties.

/

+ X (Downrange: “SOUTH")

FIGURE 5-13 TANGENT-PLANE COORDINATE SYSTEM

5-42

“right”, “downrange”, etc., that have
already been used in subroutine
descriptions.

5.3 MODEL LIMITATIONS

There are limitations in the ALM
CSC, resulting from a variety of
considerations: speed of execution,
available computer memory, and design
compromises.

In ALM itself, the height of burst
for the first DGZ in a sortie is considered

to be the height of burst for all DGZs in
the sortie, and it is used to pick the time
between layers.

If Fratricide Constraints Files are
used, ALM is indirectly subject to the
model limitations of CAIN and NWEM.
Because ALM calls modules in TARGET
via the interface routine CHKSRT, ALM
is subject to the model limitations of
TARGET; i.e., limitations on modeling
booster, PBV, and RV performance.

5-43

SECTION 6
OUTPUTS

All data generated by the ALM
CSC ar. placed into three files: the ALM
Status File (4.1); the Attack File (4.2);
and the Sortie File (4.3). The ALM
Status File informs the user as to the
success or failure of an ALM execution
and presents information, warning, and
error messages generated during the
execution of ALM. The Attack File con-
tains launch time and downtime statis-
tics, missile launch times, and RV data
(downtimes, DGZs attacked, HOBs, and
probabilities of attrition and fratricide).
The Sortie File describes the kind of
missile used in the attack and, for each
missile, the DGZs attacked by the RVs
on the missile. All three files may be
reviewed and/or printed by the user
through the MMI, by selectiag the
‘REVIEW A CASE” option in the MPS
main menu. In fact, the Attack File can
be reviewed in three ways: by missile, by
RV, and by DGZ.

6.1 OUTPUTFILES
Figures 6-1 through 6-3 present

the IOPTs for the three output files
generated by the ALM CSC.

6-1

6.2 GRAPHICAL

Two maps are produced by the
GRAPHS CSC from the ALM output
files. The Attack File can be used to
draw a Trajectory Projection Map, show-
ing the flight of each missile super-
imposed on a map of the earth (see
Figure 6-4). The Sortie File can be used
to draw a Sortie Map (see Figure 6-5).
These maps can be drawn on the video
monitor, the color PaintJet, or the black
and white LaserJet.

6.3 REPORTS

Three special reports can be
produced by the MMI CSC from the
ALM Attack File. The data in the file
can be listed by DGZ, by missile, or by
RV. Figures 6-6 through 6-8 show
examples of these reports.

LJOT ATIA SNLVIS WV -9 HHNDIA

8vV 'X0Z 'LV ‘X1 (v = adAy abessaw)
- : - 8tV ‘XT (v = 9dAy abessaw) 1x3} abessaw S
. - - 9V 'X¢ (p = 3adA} abessaw) aweu aunnoiqgns v
- - - 8V 'XC (¢ = 9dA) abessaw) aiep £
- - - 8V 'XZ (v = adAy abessaw) awn 2
uonenuURUod = ¢
10109 = €
ss3NS = 2. sabessaw
Bbutuiem = | Jo# =u
- - (v ol rd| uonewuojul = @ :3dA}abessaw L u-z
. - - 8V 'XZ alep peys £
i - - 8V ‘X2 awin uels Z
.) - 8v ‘X1 aweu ased i L
13N ‘ON3 i .
SANNOS8 LVINY ON ON
SLINN o NOILdI¥IS3q ¥I1INV¥Vd | QHOD3¥
68/9¢/6 -3ivd

$$3DOVv 1D3yig O

IVILNIND3S &

Q3iLLYW¥OiINN O
gillvNYO4

IdAL I

L't ‘YIGWNN I
(v45°,3583,) 314 sneis NIV IWVN 31

6-2

LdOI dTId MOV.LLV Z-9 34NOId

33 33 [0ot98°0] L'84 (¥sa14ea - 1s31e|) UoneINp uMmophe £
$23s 5235 {oov98°0] L84 awll-umop isaje 4
$33s 33 [oov9s ‘0] 1’84 3W}-UMOp s3ljJe] L
SOILSILVLS INIL-NAMOQJ . £
23 $29s [oov98 ‘0] L84 S3YIUNE| UIIM]IQ AW} WNWIUIN v
$3S $33% [oov98 ‘0] L84 (3sa14ea - }sale|) uonesnp youne €
$23S 33 [oov98 ‘0] 184 3w} ydunejisaie b4
$93% $J9S (o0v98 ‘0] 184 aw younej isaijjel {
SDILSILVLS JNIL HONNVT - 4
puejsi
[ose ‘L] il 1abie) bunpeyle spy Jo 13quinnN L
puejst
[ot ‘t] vl 196e) Buyderre sajissiw 40 JIdQUNN 9
[€'zcoLE 0] L'84 {80H S
Y [€'zcoLE ‘0] L84 lgOH v
[ooL ‘L] ozv adAy ajissIN £
Y [0000€ + ‘0000L-] 0'84 uonead|d puejsi 1abiey [4
vev jaqe| puejsi 13bie | 1
ay0D3Y ¥3aviH - L
13N ‘ON3I ‘ON ‘ON
SLINA SANNOY 1VYINYO4 NOILdi¥Ds3a ¥ILINVYEYd | Q¥OIIY
£/ d 68/9¢/6 :3lvd

$$370V 1D3¥Ig O
IVILNINDIS X
3dAl 3714

a3aLLvWYOoINN O
g3Livingod X

v "YIGNNN 314
(4v°,35ed,) 3114 Joenv JWVN I3

6-3

(ponupjuo)) Ld Ol A'1d XOV.LLY Z-9 HHNDIA

(2't] 4] xapul §OH L
bap [ogL + ‘08L-] £'84 (3.) apnubuo| 79@ 9
bap [06 + '06-] £'84 (No) @pmuie| zod S
induiiasn = ¢
utod pub = |
t41) rd| uone|jeysul = g :adA1zoQ v
(6666 ‘L] 9 101d1dsap xapui 29g £
335 33 [oov98 ‘0] 1’84 awn-umoQ z
[0SZ L] vl xapul AY |
buoj| si33deseyd 08 S! P1033J yde3
[uoisinpiabaiw] oL + 1) =
:Ag uanib st ‘['13s 3yl u1 sp10l3L
40 JaqWINu 3y} U3Y} ‘JaqWINU [eulpio
S,AY 3y} si 1 }] ‘|eAlie jO J3pIO S AY
3y} uo spuadap 13s Y} ul SPi0lAJ
40 JI3quinu 3y} pue ‘Ay ue o) spuod
-$31107 13 B3 :13s Pi023J YIeny S
$3935 (oov98 ‘0] 184 awn yruneq v
bap [ogL + ‘08L-] €84 (3,) apnbuoj Jutod Youney €
bap 06 + '06-] €84 (N.) 3pniite| Juiod youne 4
{oL L] vi Xapul 3|IssIN L
ayod3y J1ISSIN - v
13N 'ON3 ‘ON ‘ON
SLINN SaNNos8 1VINYOAS NOILdIYOSIa NILINYYVY | QYOI
€/ d 68/92/6 :31vda

Q3LLVYWNYOINN O

$5320v 1J3uig O
Q3LLYWYO4 K

TVILNINO3S &
IdAL 3714

v YIGWNN I
(dv°,95@3,) 3114 Yrenuv :JNVN I 14

6-4

(Papnou0)) LdOI H'11d MOV.LLYV 2-9 JUNDIA

| "(g'£401) yewsof ayy
6uisn U3LIM SI PI0I3L AY) 3'1 lBpU
-1e44 40 sanyiqeqoud Q| suleyuod pio
-331 yde3 "13S 3Y} Ul p10d3J 3J0W U0
Ised| je a1nbai spYy 1uanbasqns ||v
"TUIIYSNS SI PIOIJI JUO ‘G- SAY 104
[0'L '00] vL3 v# AY Ag appuesy Jo Ayjigeqoud val
(0’1 ‘00l vLd £# AY £q apnineyy jo Ajiqeqoud £l
(0L ‘00] vid Z# NY Aq apninely jo Aujiqeqould 41
oL ‘0°0] vLd L# AY Aq appuieyy jo Aujiqeqoud L
{o'L’00] v L4 uonue ;o Ay1qeqoid oL
[SZ'L] £l (3)1sS1W UIYIIM 13pI0) Jaquinu AY 6
foL ‘L] £l 1quinu 3|IsIN 8 S
1IN ‘ON3 ‘'ON ‘'ON
SLIND SANNOS LVINYO4 NOILdI¥DS3d ¥3L3WVHVd | aHOD3Y
g/€d 68/92/6 ‘31vd
$$320v 1D3yig O Q3LLVWYOiINn O
IWVIIN3INO3S K Q3illvVINYO4 X v YIGWNNN I
3dAl 314

(4v°,9583,) 3ji4 Woenv :JNVN 34

6-5

LdOT dTId HLLYHOS €-9 NI

[z9a

- - foL ‘L] vi je |eAllle 0 13p10] Jaquinu 134en L
bap bap [osL + ‘081-) £'84 (3.) apnubuol z9a 9
6ap bap (06 + ‘06-] £'84 (No) 3pnine| zog S

induridsn = 7
jyuiod
pub jeinbuepas = |

- - [z '0] 4 uonejeysut = @ :adAizog v

- - (66666 L] 9| (13qey/13quinu) 103d11Isap xapul 29Q £

- - [sz'1] 14 (apssiw U1 13pI0) 13qQUWINU AY [4

- . 0L L] vl Jl3quunu JYisstiN L 4

- - [ot L] €l pue|si Bujielle sayissiw O 13GUNN L

- - sz L] £l 3|ISSIW/SAY }O J3qUINN 9

: - [sz o] £l NA9d/SNY 40 13QWINN S

- - (o1 ‘0] £l 3|IssiW/SAgd 4O 13quInN 14

. - - 0cv aweu uodeapp £

- - - yev aweu x3jdwod ydune? e

- - - 174 (dweu) |age| pueysi 1abie | L l
‘1IN ‘ON3J ‘ON ‘ON

<LINN SaNnos8 1VNYHOd NOILdI¥DS3a HI1INVYEYd | quodIY
68/8/Zt :31lvd

$$320v 1D3yia O
TVILNINO3IS &

g3iLivinyodnn O
Q3illvWwyod

3dAL 3T

€V ‘HIgANNN IS

(45°,9523,) 3|14 31u0S (JNWVN I

6-6

dVIN NOLLOUrOUd AHOLOUMVYHL P9 HHNDIY

QINITS SV TN (hebtais uvutes g
- R —

TSy

Tey torjool0oxd AT0}O91ed]

[AIIISSVTIONN

6-7

dVIWHL IS S-9HUNDIA

A3IJISSVIONN

06 NVr 80 -41vd
30UaIdg uewey :yd

SOOI [8vonnenN

o 9 9 o o 5
.- \ Fs-
\\ \ w
\ c
0 o £
0
2
\ =
®
7
o g
01- zFot
|
01 9 0 9- ol- ci-
S 14SVD
dejy s13I103

Q3IHISSYTONNL

6-8

ATTACK DESCRIPTION BY DG2Z

Case = CASE1C Missile System = US-3RV
Number of RVs = 12 Number of Missiles = 4
DG2Z RV DOWNTIME MISSILE ORDER IN MISSILE

1 1 1522.9 7 2

2 1l 1520.9 7 l

3 1 1525.1 6 3

4 1l 1520.9 6 1

5 1 1522.8 6 2

5 2 1526.9 4 2

5 3 1529.4 4 3

10 1l 1520.7 5 1l

12 1 1525.0 5 3

14 1 1524.8 4 1l

44 1 1522.7 5 2

60 1l 1525.3 7 3

FIGURE 6-6 ATTACK DESCRIPTION BY DGZ

6-9

ATTACK DESCRIPTION BY MISSILE

Case = SAMPLEl Missile System = US-3RV
Number of RVs = 18 Number of Missiles = 6

MISSILE LAUNCH TIME RV DGZ DOWNTIME LAYER

3 .0 3 1 1809.5 1
3 .0 2 4 1814.0 1
3 .0 1l 7 1818.1 1
2 .2 3 2 1809.6 1
2 .2 2 5 1814.1 1
2 .2 1 8 1818.1 1
1 .3 3 3 1809.6 1
1 3 2 6 1814.1 1
1 .3 1l 9 1818.1 1
6 5 3 1 1812.2 2
6 .5 2 4 1816.7 2
6 .5 1 7 1820.6 2
5 .6 3 2 1812.2 2
5 .6 2 5 1816.7 2
5 .6 1 8 1820.6 2
4 .7 3 3 1812.2 2
4 .7 2 6 1816.7 2
4 .7 1 9 1820.6 2

FIGURE 6-7 ATTACK DESCRIPTION BY MISSILE

6-10

ATTACK DESCRIPTION BY RV DOWNTIME

Case = CASE1C Missile System = US-3RV
Number of RVs = 12 Number of Missiles = 4

RV DOWNTIME DGZ MISSILE ORDER IN MISSILE

1 1520.7 10 5 1
2 1520.9 2 7 1
3 1520.9 4 6 1
4 1522.7 44 5 2
5 1522.8 5 6 2
6 1522.9 1 7 2
7 1524.8 14 4 1
8 1525.0 12 5 3
9 1525.1 3 6 3
10 1525.3 60 7 3
11 1526.9 5 4 2
12 1529.4 5 4 3

FIGURE 6-8 ATTACK DESCRIPTION BY RV

6-11

SECTION 7
ERROR PROCESSING

There are two major categories of
error processing within the MPS. The
first is input data error checking. The
second is trapping and reporting run-
time errors encountered during CSC
execution.

Adhering to the user-friendly
design of the MPS, the man-machine
interface (MMI) checks numeric data for
valid ranges when the data is entered.
Thus, for every input data file created by
the MPS, the MMI checks all of the
numeric data. When entering data, the
MMI displays the valid range for a value
in the lower section of the panel. If a
value is entered outside of this range, the
MMI warns the user with a beep and
displays the incorrect value, in red,
directly below the range specification in
the lower section of the panel. In
addition to range checks, the MMI also
performs some non-specification checks.
Specifically, the MMI does not allow a
case to be saved unless a valid case name
and a missile type have been selected.

The MMI cannot check all of the
input character data or combinations of
numeric data that may cause errors
during CSC execution. Thus, each CSC
performs additional checks on the input

7-1

If errors are
encountered, the CSC reports the error
as described below.

data it receives.

When a CSC is executed, run-time
errors can occur. Each CSC is designed
to trap as many of these errors as possi-
ble, produce helpf' ' information regard-
ing the error, and write the error infor-
mation to a status file. The EXEC CSC
subsequently processes this file when the
CSC terminates and displays any errors
encountered during the CSC execution.
Errors such as those generated during
I/O operations, invalid input data, or
errors produced by utility routines are
processed via the status file mechanism.

Every CSC creates a status file
whether or not it generates any run-time
errors. The first record in the status file
consists of the case name and the time
and date the CSC was executed. Sub-
sequent records contain status messages
generated during the CSC execution.
These messages are of four types or
levels of severity: success, information,
warning, and error. Each message con-
sists of its type, the time and date it was
generated, the module in which it was
generated, and the message text. The

CSC must terminate the status file with
either a success or error message.

In the following messages, integers
printed within messages are represented
by "{i]", "(j1", and "[k]"; real numbers by
"[x]" and "[y]"; and strings by "sssss".

Note that the case name comes
from the Control File's first record. If an
error occurs while trying to read it, or if
the case name is invalid, or if the Status
File can't be opened, a paradox arises.
The Status File is the only authorized
medium for reporting errors, but an
error has occurred before the Status File
exists! In this situation, an error
message is displayed on the VDT and the
CSC stops. These special error messages
are as follows:

ALM: RCNTRL: Errorreadingcase
name and description.
Control File's 1st
record is bad.
ALM aborted.
ALM: RCNTRL: End-of-file reading
case name and
description.
Control File's 1st
record is bad.
ALM aborted.

7-2

ALM: RCNTRL: Case name is blank.
Can't even begin to
run.

WRSFFR: Bad logical unit!

Must be > 0 and

< 100, but not 5 or 6.

Logical unit: [i]

Case name: "sssss”

CSC indicator: [j]

WRSFFR: Bad case name!

Length mustbe > 0

and < 9. Can'tbe

blank.

Logical unit: [i]

Case name: "sssss"

CSC indicator: {j)

WRSFFR: Bad CSC identifier!

Must be > 2

but < 11.

Logical unit: [i]

Case name: "sssss"

CSC indicator: j]

WRSFFR: Couldn't open status

file!

WRSFFR: Couldn't write status

file's first record!

After CSC termination, the EXEC
CSC reads the status file. Success and
information messages are not errors and
the EXEC does not process these

messages. If the EXEC does not encoun-
ter any warning or error messages, it
automatically continues processing the
CSC execution chain. If an error mes-
sage is found, the EXEC interrupts the
execution chain, displays the error mes-
sage, and allows the user to continue the
chain or abort and return to the MMI.
The user may also view the entire status
file before deciding whether to continue.
Warning messages are processed in the
same manner as errors. However, the
user can direct the EXEC to trap or
ignore warning messages before the CSC
chain is executed. If warnings are
ignored, they are treated like informa-
tion messages. The status file is a for-
matted file and the user may also view or
print the file outside of the EXEC/MMI.

Finally, the EXEC will interrupt
the CSC execution chain if no status file
is created by the CSC or if no termina-
tion (success or error) message is

7-3

encountered. These cases might occur if
a CSC aborts before it can create a status
file or if a fatal error is not trapped and
reported by the CSC.

Information, warning, and error
messages specific to the ALM are listed
in Figures 7-1, 7-2, and 7-3, respectively.
Beyond an arbitrarily chosen point in its
execution, if the ALM aborts, it dumps
the contents of all COMMON blocks to
the Status File. The name of each
variable in COMMON and its value are
written as an information message; e.g.
LDURAT = 2.5470000E +01. These
kinds of messages aren't shown in Figure
7-1.

In the following figures, integers
printed within messages are represented
by "[i]" through "[n]"; real numbers by
"[x]" and "[y]"; and strings by "[s]" and
"[t]".

MODULE

MESSAGE

DPATTA krktt COMMON block /ATTACK/ *****

DPCNTR *kax* COMMON block /CNTROL *****

DPLC *kxtr COMMON block /LC/ ****+*

DPOPSHNS *rxrt COMMON block /OPSHNS/ *****

DPSORTIE *rxxr COMMON block /SORTIE/ *****

DPTI *akxr COMMON block /Tl ***#=

DPWEAPON | ***** COMMON block WEAPON/ *****

ORDMSS [i] missite(s) ([j] RV(s)) will be used.

ORDMSS 1 missile was specified.

ORDMSS (i) missiles were specified.

QUTCST DGZ {i] is an outcast.

RALLOC Record [i] in the RV Allocation File is an end-of-file.

RALLOC Read RV Allocation File with no errors.

RBOOST Read Booster File with no errors.

RCNTRL [s] (where "[s]" represents the case description).

RCNTRL Since no fratricide models were specified, times between layers
will be read from the Control File's last record.

RCNTRL Read Control File with no errors.

RCNTRL Read Launch Location File with no errors.

RPBVFI Read PBV File with no errors.

RRVFIL Read RV File with no errors.

RSSAFE Read sure-safe time(s) from Fratricide Constraint File(s) with no
errors.

WSORT! Wrote Sortie File successfully.

FIGURE 7-1 ALM INFORMATION MESSAGES

7-4

MODULE

MESSAGE

ADDG21

Bad sortie index!

Index = [i].

Can'tbe < 1or > [j].

Upper limit is number of RVs per weapon.

ADDG2Z1

Bad DGZ index!

index = {i].

Can'tbe < 1or > jl.

Upper limit is number of DGZs per target island.

ADDG2Z1

Too many RVs for one DGZ!
Number of RVs = [i].
Can'tbe > [j].

DGZ index = [k].

DGZ number = [m].

ADDGZ2

Bad sortie index!

Index = [i].

Can'tbe < 1or > [j].

Upper limit is number of RVs per weapon.

ADDGZ2

Bad unique DGZ index!

Index = [i].

Can'tbe < 1or > [j}.

Upper limit is number of DGZs per targetisland.

ADIJST1

Can't find previous layer's RV!
Current layer = [i].

Previous Ia(er = [jl.

Missile = (k].

DGZ = [m].

ADLAYR

Bad index for sortie lists!
index = [i]. .
Must be > 1 but not > {j].

ADLAYR

Bad number of RVs!
Number of RVs = [i].
Must be > 0 but not > [j].

ADXTRA

Bad index for sortie lists!
Index = [i].
Must be > 1 but not > [j].

ADXTRA

Bad number of RVs!
Number of RVs = [i].
Must be > 0 but not > [j].

ALM

Can't reach farthest DGZ from silo closest to target island!

FIGURE 7-2 ALM WARNING MESSAGES

7-5

MODULE MESSAGE
ABRTRN Aborting Allocation CSC (ALM).
Contents of COMMON blocks follow.
FNPREV Couldn’t find previous RV attacking DGZ!
DGZ index = [i].
Previous layer = [i].
GETSRT Number of DGZs in sortie doesn't equal number of RVs on missile!
Number of DGZs = [i].
Number of RVs = [j].
GTBLYR Bad layer number!
Layer number = [i].
MOPUPC Couldn’'t find sortie to repeat!
MOVLFT Couldn't find matching DG2!
Leftmost DGZ in sortie = [i]
ORDMSS Ran out of missiles!
NMSLLC = {i]
FIRST = [j]
LAST = [k]
NDNEED = [m]
NRVSWP = [n]
PREPAR Bad number of missiles used!
Number of missiles used = {i]
Should b~ atleast 1.
PREPAR Bad number of RVs!
Number of RVs used = [i]
Should be at least 1.
RALLOC Bad targetisland elevation.
Can't be < 10000 feet or > 30000 feet.
RALLOC Couldn''t open RV Allocation File!
File = "[s]".
RALLOC Targetisland label is blank.
RALLOC Error reading RV Allocation File's 1st record.
RALLOC End-of-file reading RV Allocation File's 1st record.
RALLOC Error reading RV Allocation File's 2nd record.
RALLOC End-of-file reading RV Allocation File's 2nd record.
RALLOC Error reading RV Allocation File' 3rd record.
RALLOC End-of-file reading RV Allocation File's 3rd record.

FIGURE 7-2 ALLM WARNING MESSAGES (Continued)

7-6

MODULE

MESSAGE

RALLOC

Error reading RV Allocation File's [i]th record.

RALLOC

End-of-file reading RV Allocation File's [i]th record.

RALLOC

Bad height-of-burst (HOB)!
Can'tbe < 0or > 32000 feet.

RALLOC

Bad number of missiles attacking target isiand.
Number of missiles = [i].
Can'tbe <107 > {j].

RALLOC

Bad number of RVs allocated.
Number of RVs allocated = [i].
Can'tbe < 1or > (jl.

RALLOC

Number of RVs isn't an integer multiple of number of missiles!
Number of RVs = [i].
Number of missiles = [j].

RALLOC

Error skipping RV Allocation File's
[ilth record.
Error ignored.

RALLOC

End-of-file skipping RV Allocation File's
[i]th record.

RALLOC

Bad index descriptor for DGZ {i].
Index descriptor = [j].
Can'tbe < 1or > 9999.

RALLOC

Bad DGZ type for DGZ {i}.
DGZ type = [j].
Can'tbe < 0or > 2.

RALLOC

Bad latitude for DGZ {i].
Latitude = {x].
Can'tbe < -90 or > +90 ~=grees.

RALLOC

Bad longitude for DGZ (i].
Longitude = [x].
Can'tbe < -180 or > + 180 degrees.

RALLOC

Bad height-of-burst index for DGZ [i].
Index = {j].
Can'tbe < 1or > [k].

RALLOC

Bad number of RVs for DGZ [i].
Number of RVs = [j].
Can'tbe< tor > {k].

RALLOC

Record {i} (DGZ [j]) had 1 error.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-1

MODULE

MESSAGE

RALLOC Record [i] (DGZ {;]) had [i] errors.
RALLOC No allocation records!
RALLOC Nfug\ber of Fratricide Constraint Files is less than number of heights-
of-burst.
Number of files = [i]
Number of HOBs = [j]
RALLOC Number of Fratricide Constraint Files is greater than number of
heights-of-burst.
Number of files = [i]
Number of HOBs = [j}]
RBOOST Couldn't open Booster File!
File = "[s]".
RBOOST Error reading Booster File.
File = "[s]".
Record number = [i]
RBOOST End-of-file reading Booster File.
File = "[s]".
Record number = [i]
RBOOST Inconsistent number of RVs per weapon!
Number of missiles in attack = [i]
Number of RVs allocated = {j]
Quotient = [k] RVs per missile But according to Booster File, there are
[m] RVs per missile!
RCNTRL Error reading name of RV Allocation File!
Control File's 2nd record is bad.
RCNTRL End-of-file reading name of RV Allocation File!
Control File's 2nd record is bad.
RCNTRL Name of RV Allocation File is blank!
Control File's 2nd record is bad.
RCNTRL Error reading name of Launch Location File!
Control File's 3rd record is bad.
RCNTRL End-of-file reading name of Launch Location File!
Control File's 3rd record is bad.
RCNTRL Name of Launch Location File is blank!
Control File's 3rd record is bad.
RCNTRL Missile name is blank!
Control File's 3rd record is bad.
RCNTRL Error reading Booster File record number and name.

Control File's 4th record is bad.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-8

MODULE

MESSAGE

RCNTRL End-of-file reading Booster File Data and name.
Control File's 4th record is bad.

RCNTRL Name of Launch Location File is blank!
Control File's 3rd record is bad.

RCNTRL Bad record number for booster file!
Record number = {i}].

RCNTRL Booster File Name is blank!

RCNTRL Error reading PBV File record number and name!
Control File's 5th record is bad.

RCNTRL End-of-file reading PBV File record number and name!
Control File's 5th record is bad.

RCNTRL Bad record number for PBV file!
Record number = [i].

RCNTRL PBV File Name is blank!

RCNTRL Error reading RV File record number and name!
Control File's 6th record is bad.

RCNTRL End-of-file reading RV File record number and name!
Control File's 6th record is bad.

RCNTRL Bad record number for RV file!
Record number = {i].

RCNTRL RV File Name is blank!

RCNTRL Error reading number of fratricide models and path!
Control File's 7th record is bad.

RCNTRL End-of-file reading number of fratricide models and path!
Control File's 7th record is bad.

RCNTRL Bad number of fratricide models!
Number of models = [i]

RCNTRL Path for fratricide modeis is blank!

RCNTRL Error reading names of fratricide constraint files!
Control File's 8th record is bad.

RCNTRL End-of-file reading names of fratricide constraint files!
Control File's 8th record is bad.

RCNTRL 1st Constraint File name is blank.

RCNTRL 2nd Constraint File name is blank.

RCNTRL 3rd Constraint File name is blank.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-9

MODULE

MESSAGE

RCNTRL 4th Constraint File name is blank.

RCNTRL Error reading Attack File name!
Control File's 9th record is bad.

RCNTRL End-of-file reading Attack File name!
Control File's 9th record is bad.

RCNTRL Attack File name is blank.

RCNTRL Error reading Sortie File name!

Control File's 10th record is bad.

RCNTRL End-of-file reading Sortie File name!
Control File's 10th record is bad.

RCNTRL Sortie File name is blank.

RCNTRL Error reading run options!

Control File's 11th record is bad.

RCNTRL End-of-file reading run options!
Control File's 11th record is bad.

RCNTRL Fraction of fuel for range extension is bad!
Fraction = [x]

RCNTRL You've allocated [x] of the fuel for range extension but the missile has
no PBV!

Range(s) won't be extended.

RCNTRL Reentry angle is bad!

Angle = [x?

RCNTRL Error reading times between layers!
Control File's 12th record is bad.

RCNTRL End-of-file reading times between layers!
Control File's 12th record is bad.

RCNTRL 1st time between layers is bad.

RCNTRL 2nd time between layers is bad.

RCNTRL 3rd time between layers is bad.

RCNTRL [ilth time between layers is bad.

RCNTRL No times between layers on Control File's last record. At this point,
however, the number of layers is unknown. If there's only one layer in
the attack, there's no problem.

RCNTRL Control File contained [i] errors.

RLAUNC Couldn't open Launch Location File!

File = "[s]".

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-10

MODULE MESSAGE

RLAUNC Error reading Launch Location File's 1st record.
RLAUNC End-of-file reading Launch Location File's 1st record.
RLAUNC Launch complex label is blank.
RLAUNC Bad number of missile silos.

Number of missile silos = [i}

Can'tbe > {j].
RLAUNC Bad number of missile silos.

Number of missile silos = [i]

Can'tbe < [j]; i.e. number of missiles specified in Attack File.
RLAUNC Error reading Launch Location File's 2nd record.
RLAUNC End-of-file reading Launch Location File's 2nd record.
RLAUNC Bad latitude for co-located silos.

Latitude = [x].

Can‘tbe < -90 or > +90degrees.
RLAUNC Bad longitude for co-located silos.

Longitude = [x].

Can'tbe < -180or > + 180 degrees.
RLAUNC Bad elevation for co-located silos.

Elevation (altitude) = [x].

Can't be < -10000 feet or > 30000 feet.
RLAUNC Error reading Launch Location File's 3rd record.
RLAUNC End-of-file reading Launch Location File's 3rd record.
RLAUNC Error reading Launch Location File's [iJth record.
RLAUNC End-of-file reading Launch Location File's [i]th record.
RLAUNC Bad missile index for [i]th missile.

Missile index = {i].

Can'tbe > {j].
RLAUNC Bad latitude for [i]th missile.

Latitude = [x].

Can'tbe < -90 or > +90degrees.
RLAUNC Bad longitude for [iJth missile.

Longitude = [x].

Can'tbe < -180 or > + 180 degrees.
RLAUNC Bad elevation for [i]th missile.

Elevation (altitude) = [x].
Can'tbe < -10000 feet or > 30000 feet.

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-11

MODULE MESSAGE

RLAUNC Bad flight letter for [iJth missile.
Flight letter = "[s]".
Must be A-Z.

RLAUNC Record [i] (silo {j]) has 1 error.

RLAUNC Record [i] (silo [}]) has [k] errors.

RLAUNC Launch Location File had 1 error.

RLAUNC Launch Location File had {i] errors.

RPBVFI Couldn't open PBV File!
File = "[s]".
RPBVFI Error reading PBV File!
File = "[s]".
Record number = [j]
RPBVFI End-of-file reading PBV File!
File = "[s]".

Record number = [j]

RRVFIL Couldn't open RV File!

File = "[s]".
RRVFIL Error reading RV File!
File = "[s]".

Record number = {j}

RRVFIL End-of-file reading RV File!
File = "[s]".
Record number = {j]

RSSAFE Couldn't open Fratricide Constraint File!

Path = "[s]".
File = "[t]".
RSSAFE Error reading Fratricide Constraint File's third record!
Path = "[s]".
File = "[t]".
RSSAFE End-of-file reading Fratricide Constraint File's third record!
Path = "[s]".
File = "[t]".
RSSAFE Bad yield in Fratricide Constraint File.
Yield = [x]
Path = "[s]".
File = "[t]".

FIGURE 7-2 ALM WARNING MESSAGES (Continued)

7-12

| MODULE

MESSAGE

RSSAFE Unequal scaled heights-of-burst in Fratricide Constraint File!
SHOB1 = [x]
SHOB2 = [y]
Path = "[s]".
File = "[t]".

RSSAFE Error reading Fratricide Constraint File's 6th record!
Path = "[s]".
File = "[t]".

RSSAFE End-of-file reading Fratricide Constraint File's 6th record!
Path = "[s]".
File = "[t]".

RSSAFE Bad sure-safe time in Fratricide Constraint File.
Yield = [x]
Path = "[s]".
File = "[t]".

RSSAFE Did not find sure-safe time for [iJth height-of-burst.
Height-of-burst = [x] feet.

WSORTI Couldn't open Sortie File!

WSORTI Error writing Sortie File's 1st record.

WSORTI Error writing Sortie File record for Missile 1], RV [j].

FIGURE 7-2 ALM WARNING MESSAGES (Concluded)

7-13

MODULE MESSAGE
ALM ALM aborted.
ABRTRN ALM aborted!
RALLOC ALM aborted.
RBOOST ALM aborted.
RCNTRL ALM aborted.
RLAUNC ALM aborted.
RPBVFI ALM aborted.
RRVFIL ALM aborted.
WSORTI ALM aborted.

FIGURE 7-3 ALM ERROR MESSAGES

7-14

SECTION 8
SAMPLE PROBLEMS

The sample problem presented in this
section demonstrates the development
and execution of a laydown case in which
the only function enabled is assignment.
This example illustrates how the
assignment function is used to generate
a timed laydown of ballistic missile
forces on a target set that fulfills an
input RV allocation and that satisfies
missile system operational constraints,
and user-specified targeting require-
ments and objectives.

8.1 DESCRIPTION
The scenario implemented in this

laydown case is defined in Figure 8-1. In

an effort to keep this example as self

contained as possible, the following

input options were selected:

® Time Between Layers.. A user-
specified, uniform (constant) time
between layers of 2.5 seconds was
prescribed. Specification of this
time obviates the need for one or
more CAIN-produced, input
Fratricide Constraints Files.

® RV Allocation. A user-specified,
uniform 2-on-1 attack was
employed. Specification of this RV
allocation obviates the need for a
SOADA-produced, input RV Allo-
cation File.

8-1

As a result of these choices, the
only input required to exercise this
sample that cannot be specified during
case definition is the characterization of
the missile system to be employed.
When developing a laydown case, the
user must specify the weapon system to
be employed, but the specification of the
missile model corresponding to that
system, must have been previously
developed under the MPS “"BUILD
DATA SETS” option.

Figures 8-2 through 8-7 show the
Man-Machine Interface (MMI) panels
used to develop the missile data set for
the “US-3RV” missile system employed
in this example. The process begins by
selecting the "BUILD DATA SETS”
option on the MPS main menu.

8.2 INPUTS

Figures 8-8 through 8-13 show the
MMI panels used to define the sample
laydown case. The process actually
begins by slecting the "DEFENSE
TIMED LAYDOWN CASE” option on
the MPS main menu shown earlier in
Figure 8-2. Up to Figure 8-10, the
panels are shown in the order they would
appear when running the MPS. The
order in which the remaining panels

Missile System

No. of Missiles 6

No. of RVs/Missile 3

Launch Location Centroid 55°N, 80°E, 1000 ft elevation
Min. Time Between Launches 0. seconds

Minimum Exoatmospheric Spacing 90,000 ft.

Target Array
No. of DGZs 9
Target Location Centroid 48°N, -100°E, 3000 ft elevation
RV Allocation Uniform, 2 RVs/DGZ
Assignment Options
Time Between Layers User-specified, Uniform, 2.5 sec
Earth Model Rotating
Mazx. Fraction of PBV Fuel for
Range Extension .25
Reentry Angle 24°
Attack Timing Objective Synchronize Arrival Times
RV Spacing Space a Minimum Distance
Height of Burst 2381.1ft.

FIGURE 8-1 SCENARIO SPECIFICATION

8-2

ANAW NIV SdN 28 JUNDIA

OLOD-0Td nNUaK UTeW-84 o1qel AaM-td dI9H pI@21d-2d dI1®H Td9uUed-Td 2II0QVY-OsF

uotido pa3ybrITybry 30979s 031 NINLIY ssa1d

SdW LIX3 X-31V
SIILITILA 0-3TVY
SL3S Vvavd a1ingd d-31V
dSvO ¥ MIAIATY Y-V
(SAVW % SHAVYD MWYAQ) IASVO VYV HAVED 9-3TY
JSVO V¥ ILNOIXI IJ-ITV
JISVO ¥ Qvol T-31V
dSVYO NMOQAVI QIWIL ANIJIA L-3TV
dSVYD SINIVYLSNOD JVATONN IANIJIA N-ITV
dSYO ALITIAISSIOOV ANIJIA V-3TV
= 9TTSSTH = 9se)
T00 :dI T3ued

ANIW NIVHW SdW

8-3

NOILINIAAd LIS VLVd A'TISSIN SdN €8 FANDIA

0L09-0Td NUSBW UTeH-84

oy

atqel Aoy-t£d dToH praTd-zd diaH [oued-1d 23IoqV-OS3

= si9joeIeRyd JO JI9quNnU WNWIXeW :anfep xajoeaeyd

ysttbug

SAW\SdHW\ : D

LIX3d X-31V

VIVa Ad MIIATE/1103

VYIVd Add MIIATI/LIQI

YIVd ¥ILS00d MITAIY/LIA
NOIIVINODIINOD WALSAS INIJAIA
SLINN 40 WALSXS

dWVN pue ‘HIvVd ‘3AINQA
dsvd VIvd JTISSIH

00Z :dI T™ued

NOILINIJIAd LIS VIVA JdTISSIW SdKW

8-4

NOLLVYNDIANOD WHLSAS ATISSIN ¥-8 JHNDIA

NUSK UTeR-84 oT1del A9d-td dI®H PI@Td-zd dI®H Toued-1d 3IAOQV-OS3

0LO9-01d
0z = sa93dvieyd JO Iaqunu wnuixey :8nfep Iajdeaeyd
AdE-Sn ¢ TAAOW AY
Adg-sn ¢ TIAOW Add
Adg-Sn ¢ TIAOH JILS00d

sjusuodwo) walsiks ITTSSTH

- — ———— — — — G = G = - D D G G i S

LIX3T X-3ITVY

TIAOW A LOIATIS
TIAOW A€d LOJIIS
TIAOW YIALSO0d LOIATIS

Ade-sn 2 JWVYN NOILWINDIJINOD

102 :dI T3{ued

NOTIWINOIINOD WILSAS TTISSIH

8-5

OLOO-0T1T4d

NUaN UTeW-84

STIANVd VLVA HALSOO0H 28 3UNDIA

arqel Aed-td dISH pPl@TJd-2zd dyaH [dued-1d 23II0QVY-OSd

oz = SI@3o0eILyd JO IIqUNU WNUTXeW

1anTeA Ia3joeaeyd

098

VYIivad JAVS ANV LIXd X-3TV

VIVA HOVW °“SA DSWIA ¥ILSO00d AJdIDIdS
YIvVad ¥3LS00d AJAIDA4S

000000°
000096°
000008°

d

SITYLNIT HOVH

NN O~AM

%8 80 o0 08 08 o 6 o8 se s

AdE-SN

STHONNVT NIIMIIE AWIL WNWINIKW
ALITIGVITIY AGd/TATISSIKH

ALITILGVITIY HONNVI
¢ SWID

J3LS00d NO SAd J0O ¥IGHWNN
YIALS00d NO sAdd 40 HIHHNN

*SA SWVIA 40 YIALHNN

dAOVIS INIWIADVNVYH AODYINI

SEOVLS 40 YIGHWNN
IWVYN ¥4I LSO00d

£0¢

@I Tsued

NOILINIJId ¥ILSOOH

8-6

(Ponunuo)) STANV VI.VU HALSO0H 9-8 AUNDIA

0L09-0Td nNU3aW uTen-g8d oTqel Aad-cd di2H PIaTJI-Zd dI8H T3ued-1d 2II0QV¥-OSd

LO+d00000T"° = WNWTXe}N 000000° = WNWUTUTK :9nTeA Teay
at 000000° : v OVLS - LSMYHL HWONOVYA
q1 0°GEEB9 . £ IOVYILS - LSNYHI HWNNOVA
qt *0009LZ : Z IAOSVYILS - LSMIHL HNNOVYA
qTt *000L8Y : T d9YILIS - ISOUHIL HANOVA

039S 000000° : v d9YLS - JSTINAWI D1IJIO0ddS WNNOVYA

o9s o0V °00¢ : £ JOVLS - FSTINAHWI DIJAIOIdS HNNOVA
09Ss 000°00¢€ H Z JOVLS -~ IASTNAWI DIJAIDIAS HNNOVA

-1 000°00¢ : T d9YIS - JASINdHI DIJAIDAAS WNNOVA
q1 000000° H ¥ 3OVIS - LHOIIM
qTt 0°T108T : € d9YIS ~ LHOIaM
at 0°00019 : Z FOVLS - LHOIIM
qaTt *000L0T : T d9YLS - IHOIIM

¢ /T = asqunN abed

v0Z :dI Tsued

YIVAd NOILVYOIJIOAdS ddLSOOH”

8-7

(Panunuo)) STANVA VLVA HALS00H 9-8 AMNDIJ

OL09-0Td nNUSH UTePH-84 aTqel Aa)-c£d disH pIaTd-2d dI9H [9ued-Td IJIOqY-OST

00°000T = WNWTXeW 000000° = WNWIUTK :92nTeA Teay
o9s 000000 : ¥ dOVLS - JHILNING WNWIXVH
098 000L°69 : € JOVIS - HWIININE WAWIXYKH
oss 000¢ - 8s H ¢ HOVILS - IWILNYNG WNNIXYHW
oss 0009 °9S : T JIOVIS - TFHILNYNG WAWIXYH
2 9 4 000000 ° : v dOVLS - VIV LIXT FIZZON
33 000€°92 : £ dOVIS - VIYVY LIXI TATZZON
A3 000L°G¢E : Z dOVLS - VIIV LIXIT JTIZZNN
33 0002°81 : T JOVLS - VIYV LIXH FATZZON
33 000000 ° : v JOVIS - VANV JONIYIAJIZY
33 oooc- ot : € JOVIS - VYIIVY JAONIIILTH
33 00020V : ¢ JOVLS -~ VIAYVY JIONIIITIJT
33 00020V : T JFOVLS - VIYV JFONFITITA
€ /2 = aaqunN abed

voc :dI T®™ued

VIVA NOILVDIJIDIdS ddLSood

8-8

(Ponunuo)) STANVd VLVA HALSO0H 9-8 HUNDIA

0LO9-0Td nNUSW utew-84 9t1qel A9j-t£d dioH pPIaTJI-2d dIaH Taued-1d 3IIoqy-OSd

000°001 = WNUTXeR 000000° = WNUWTUTW :anfeA [eay

LIXd X-3T¥

b 0000°01 : LIWIT NOILWIITIAOOV ISYHA LSO00d
09s/33 000°21T1 : NIVD ALIDOTIA HONNVI
qat 000°"svL : JLHOIHAM dNOYHS
o112 000995 : JWIL NOSILLICL dNOYHS
oIs8 0009 °9¢ :@TOH IANLILLY JALVILINI OL LHOITd 40 JWIL
oas 00000°2 : NOILVANA HONNVI TVOILHIA
o9s 000000° : JOVLS ILNIWIOVNVH ADYINT - JWILNANG °NIW
09s 000000° : ¥ IOVLIS - NOILWINA LSYOD dOVLS-YILNI
o9s 000000° : £ JOVLS -~ NOILWVING LSVOD IJIOVLS-YILNI
09s 000000° : ¢ JOVYLS - NOILWANA ISVOD dOVILS-UILNI
09s 000000° : T JOVLS - NOILVANG ISVYOD dOVLS-JILNI

€ /€ = aaqunN abed
yoz :dl Taued

¥YL¥d NOILVOIJAIDIdS ¥dLS00H

8-9

(PapPNPUo)) S'TANVI VLVA HALSOOH 9-8 AUNDIA

ITXI-NINLIE OLOD-0Td oT1qel Aa-td dieH proTd-zd di8H T°2ued-T1d 23IXOQV-OSJT

000°00T = wnuixep 000000 ° = WNWTUTW :9anlep Tead
00000° 0° o1
00000 0° 6
00000° 0° 8
00000° 0 L
00000 0° 9
00000° 0° S
00000° (o v
00000° 0° €
00000° 0 (4
00000° 0° 1

INIZIOIAAF0D OWNIA YIGHNAN HOVKW KAajug

ot /o = Pa3OI[aS Iaquny

G0Z :dI Taued

IT9VL JIGWNN HOVW °"SA LNIIDIA4J0O OVIA YILSOOH

8-10

OL09-0Td

STANVd VILVU Afd 9-8 HHNDIA

nuoW uteW-gd otqel AoM-td dI°H PIaTJ-zd dI9H Tdued-1d 3JI0qV-o5d

02 = si930vIeyd JO IJQUNU WNWTIXeW :anTep Iaj3deaeyd

ur-3se7 3JJo-3satd
0
€

K3ttiqeded 330-uU0
paiemiod 9SON
xaysnd

Ade-S0n

se oo e

VIVa JFAVS GNV LIXI X-31V

VIVd LOIArdo XJdIDA4S
VIVd A9d XdID0ddS

JAOH INIWAOTdIA AY
YdIL NO S1D3f90 A0 UIGWNN
A9d NO SI103rdo 40 YIDWNN

NOIIJO INIONI NIVH
NOILJO ONILNNOW Add
ddAlL Aded

IWYN Agd

902 :dI Tsued

NOILINIJAd A€d - LIS VIVQ JTISSIH

8-11

0L09-0Td nNUIN UtTeH-gd

(Panupuo)) STANVI VLVA AHd 98 AUNDIA

a1qel Aaj-td di8H p1aTd-2d4 dI9H [dued-Td 3II0QV-OSd

£0+300000T " = WNWTXeRW 000000 ° = WNWTUTW :9nfTep [eay
oes 000000° : JIWIL NOILISNYML LSNYHI Tv¥Nd
qat 000000° : IHOIAM FANLONALS HAIL
o9s 000000° : NOIYALIYO NO-NINL ISNIYHIL HOIH
0006°2T : OILVd ISNYHL TIAIT IVNA
o9s 0000°0V : NINE XVYMVY-XOVd
oes 000€° €T H NN INTHXOTdIAA-Add
oes/qrt 0000%G° : JIVIMOTd NOILVLIOYM FOVIIAY
oos 00008° Vv : NOILWING NOILVIOYW FAOVIIAV
o9s 009 °90€ : dSINdNI OXIJAIDAAS
at 009°691 :(STaAST Tenp JT MOT) ISAYHI IANIONA TVIXV
art 00" v6¢€T : LHOIAM T13ANd A1dVSn
qat 00°GEPYZ : IHOIAM (X¥A) FNNILONALS

2 /1T = aaqunN abedq

L0Z :dI T™ued

YILYa Add

- LIS VYIVA JTISSINW

8-12

(penunuo)) STTANVd VILVA Atd 9-8 3UNDIA

0109-0Td nual UTeW-g8d o1qel AeM-cd4 dI®H PIatd-zd dT°@H TdUed-Td 3IIOQV-OSd

00°000T = WNUWTXeR 000000° = WNWTUTW :9nTep Teay
LIX3 X-3TV
o9s 000000° : NOILWVNNG SNILVYIdO YOSNIS YVITILS
oes 00000°1 : NUNE NOILVYVdIS Add/¥31LS00€ 1LSOd
o9s + 000000° : LSV0D NOILWYVddAS Add/d31LS00d ISOd

2 /z = asqunN abed
L0C Q1 1aoued

¥YIVd Add - LIS VIVA TTIISSIH

8-13

(PapnPu0)) STANVI VLVA Afld 98 AUNDIA

ITXI-NUNLIY OLOD-0Td arqel Asd-cd dI3H PraTd-zd dI8H T2ued-Td4 3II0QY-OST

1 = WnWIXey 0

WNWTUTKH

tantep asbajul

000000°
000000°
000000°
000000°
000000 °
000000°
000000°
000000°
000000°
0°00006
0°00006
0°00006

AAAOCOOO0OO0OO0OO000O

<t
It
ot

HFNOTOONSNON

ONIOVYdS LOALHO0-YIALNI WNWINIH

33

T =M
JOLVOIANI IAdAL LOI[LdO

309(qo

sc

/€ = PIIDD[SS ISqUNN
= xoqunN abed

£ /1

:dI T°oued

NOILVYVOIJIOIdS LOILfdO Add - LIS VIVA J'TISSIK

8-14

OLO9-0Td NUSW UTeW-8d

STANVd VLV AY L-8FUNDIA

orqel Aed-td disH pPToTd-2d diaH TPuUed-Td

3axoqy-osd

(114 = sJI93j0eaeyd JOo asaqUNU E:Ed.xmz santTeA J93o0eaeyn
ut T0-300000T° : SSANHONOY AIVIANS
bap 0000°01 : TTONV-JTYH INOD
ut 0000°0T : snIavyd dsvd
ut 00000°T : snIavd ISON
0000L6° : ALITIGVITAY AY/AVIHEVM
33 000°00¢ : ddo
I 000°12¢ : aTIIX
33 00€88°L : VAUV "ONIYIITA
at 0L*99T1 : IHOIIM
33/41 01°0002 : INIIDIAIF0D JILSITIVE
0 : SATYINT LJAIT “SA © A¥eH JO HIGWAN
o : SATYING HOVH °SA 9Vdd JO YILAWAN
S : SANTIVA 9OHS J40 YIGHNN
AdE-SN ¢ IWYN AY
Z /T = xaqunN abed
602 :dI Tsued

NOILLINIJAJA Ad

8-15

(PaNuUNUO)) S IANVI VLVA AYH L8 AHNDIA

OLOD-0Td NUSW uTen-g8d arqel AoN-¢d dI3H pP1aTd-~zd dIsH Taued-1d 2IIOQY-OST

uotido pajybrTybry 309785 03 NANLIY ssaid

bap
bap

€/1.I4/33
€/T.14/33
£/T . IX/33
€/1.14/33
€/T.IN/33

ve-30o0000T1°
ve-300000T1°
v€-300000T1"°
ve-30o0000T1"

00°000T
000°00¢
000°00T
0000°0S
000000°

VYIVA JAVS ONVY LIXI X-31V

VILVQd IAIT °"SA © A¥eH AJI03dS
VLV HOVH °SA S5Vda A¥ XJID3dS

oe s 00 9o e
S NM gD

(v) TTIONY NOVILIV WAWINIK AW
(D) FTONV MOVLILV WAWIXVR AdeKW
OILVY SViQ-0L-LJdIT HAWIXVH A¥CW
INFIOIJAT0D SWIA SNOJISIA AMCH

Lsdnd 4O LHOIAH AAIVOS
LS¥Ng 40 IHOIFH AIIVOS
LSdNg 4O LHOIIH AIIVOS
LS3Ngd 4O LHOIIH AIIVOS
LSdNd 40 LHOIIH AIATIVOS

Z /e

JaqunN abed

60¢

:dI 1a2uegd

NOILINIJEA Ad

8-16

(PPnupuo)) STANVd VILVA AY L8 HUNDIA

ITXFT-NINALIY OLOD-0Td dIqed Koy-¢3 dieH p1atTd-zd dI3H [aued-1d 3II0QY-ISH

000°00T = WNWTXeW 000000° = WNUTUTW :9nfeA Tesy
00000° 0° o1
00000° 0° 6
00000° 0° 8
00000° 0° L
00000° o° 9
00000° 0° S
00000° 0° v
00000° 0 €
00000° o r4
00000° 0° T

INFIOIJAT0D OWVA JIGWAN HOVR Axjumg

ot /o = po3OI[3S A2qUNN
0Tz :0I T3ued

TIAYL HAAWAN HOVW °SA INIIDIJAd0D DWIA AY

8-17

(P3PNPUO)) S IANVI VILVU AY L8HUANDIA

ATXI-NIALAY OL09-0Td 91qel Ae¥-cd d1aH pIatTd-zd dI9H Tdued-1d IJIOqV-OS3I

6666°68 = WnWIXeW 000000° = WNWTUTW :3nTeA Teay
00000° 0000° ot
00000° 0000° 6
00000° 0000° 8
00000° 0000° L
00000° 0000° 9
00000° 0000° S
00000° 0000° v
00000° : 0000 €
00000° 0000* 4
00000° 0000° T

bap
INITOILIA0D IJIIT (o) MOVUIIV 4O TTONV Kx13ug
ot /o = pa3da[asS IdaquUnNN

TIZ a1 T3ued

d19VL INIIDIJAJF0D LAIT °"SA D AYPH

8-18

appear depends on the order in which the
user addresses the following options in
Figure 8-10: “SPECIFY RUN
OPTIONS,” "SPECIFY LAUNCH
LOCATION DATA" and “SPECIFY RV
ALLOCATION.” Figures 8-11 through
8-15 reflect the panel order that results
when the user works through these
options from top to bottom in Figure
8-10.

8.3 EXECUTION RESULTS

Figure 8-16 is the ALM Status File,
Figure 8-17 is the Attack File, and
Figure 8-18 is the Sortie File produced
by the execution of this timed laydown
case. To interpret these files, the reader
needs to consult the IOPTs provided in
Figures 6-1 through 6-3. Alternatively,
the user has the option of producing up to
three special reports from the output
Attack File (see Section 6.3).
8-19 provides a description of the
resultant timed laydown by missile.

Figure

Inspection of this figure reveals the

following:

¢ The input RV allocation has been
realized since every DGZ is
targeted by 2 RVs.

® Three unique sorties have been
formed from the 9 DGZs, and each
sortie is executed by two missiles.

® Launch times of first-layer missiles
(Missiles 1, 2 and 3) have been
adjusted so that the downtime of
the first RV to arrive from each of
these missiles is identical.

® One missile is launched at the
earliest possible launch time (t=0).

®¢ Launch times of second-layer
missiles (Missiles 4, 5 and 6) have
been adjusted so that the in-line
RV spacing is greater than or equal
to 2.5 seconds at all DGZs. Note,
the intra-DGZ species is identically
2.5 seconds for at least one DGZ
targeted by each second-layer
missile.

8-19

NOLLINISJAU ASVO NMOGAV I TANWLL 8-8 HHNDIA

0L0O9-0Td NUSW UTeN-84 oTqel Aay-€d dI9H pPIaTJd-2d dI9H Tdued-1d 3II0QV-OSI

8 = SsJ9jdeaeyd JOo Jaqunu wnuixen tanTeA asjoeaeyo

330
330
330

uo
330

(-bap TewWTO®pP) ystTbUI
wajqoad aydwes jenuel SdOUBUDIUTRH WIV
TIITdWVYS

dS¥D FAVS NV LIXd X-31V
LIdd / AYINd ¥I¥d dJd-31V

INIWSSISSY TDVWYA
LNIWSSISSY NOILIVLLY
LNAWSSISSY IAIDTULVHS
LNIHWNOISSY
NOILY¥OOTIV

WILSXS FTISSIN LOATIS
SLINN J40 WALSAS
JOILdIYOSIA ISVO

JWUYN dSVYO

AJE-SN = OTTSSTH TIIdNVYS = Iase)

00 :QI T3ued

NOILINIJIA ISVO NMOJAYI (JIWIL

8-20

AHINYG V.LVA ISVO NMOUAVT 6-8 AHNDIA

OLO9-0Td TNUSH UTeN-84 oTqel XAay-td dIsH p1atd-zd dIeH TdUed-1d 3II10QV-OSd

uotydo Pa3yUbTTUBTY 309Tas 03 NINLIAY SS°1d

LIX3 X-3TV

TOUYLNOD INIWNODISSV

AJE-SN = OTTISSTH TTIdWVS = 9Se
020 QI Tsued

AMINT YIVaQ ISVO NMOGAVT

8-21

ONFINAAHIS TVLLINI ANV LNJFWNDISSV 01-8 4MND14

OLOD-0Td nuaW utey-g8d oa1qel Aay-€d disH PIaTd-zd d{oH T9uUed-Td 3IOQqYV-OST

uotido pa3yubrTybTy 30979s 03 NYNLIY SSoad

LIXd X-31IV

NOILVOOTIV AY X4IDaAdS

SYIAVY] NIIMLIG FTWIL INVISNOO
NOILJO ONIWIL ¥IAVI

o9s 0000G6°¢
si19del usamlaq auT3 Juelsuod Lytoadsg

sawr} parjroeds-aesn NOILJO SYIAVI NIIMLIL FAWIL
VYIVQ NOILVOOT HONNVI AJIDIA4S

SNOILdO NO¥ XJIDI4S

AdE-S1 = IBTTISSTH TT'IdHVS = 8se)
0v0 :dI TPued

ONITINAFHOS TTVILINI ANV INAWNOISSY

8-22

SNOILLJO NNH LNHWNDISSV [1-8 HHNDIA

0109-0Td NUSKH UTeW-84 oaTqel Aai-€d dioH proTd-2zd dI°9H [aued-Td 3II0QV-OSd

000°00T = WUNWTXeW 000000 ° = WNWIUTH :9anTep Teay

20Ue3ISTJ WNUTUTK 3@ SAY @oeds
sewT] TeATIIV @zTuoayouds

bap
%

LIXd X-3TVY

NOILdO SNIOVdS Ad

NOILdO SIWIL TVAIMIVY AY YIAVI LSYId
NOILJO HI¥VI SNILVIOYW

(Abasua °“utw I03F 0) TTIONV XIINIIY
NOISNILX3 FONWY Add ¥0d T1and 40 INIOYAd

yzaeg butriejoy
0000° %2
0000°s2

AdE-SN = BTISSTH TTIdWYS = 3SseD
Tv0o QI T°@ued

SNOIIJO NNY INIWNDISSY

8-23

e —

VILVA XH TdWOD HONNV'I 21-8 AUNDIA

0L09-0Td nNusW uTen-84 oarqel Aay-c¢d dI®H P19TJd-24 dreH TPued-~-Td 2II0QV~-OSI

uotr3do pa3ybrTYPbTY 309195 03 NINLAY SsSaad

LIXd X-31V¥

VIV¥d NOILVDOT HONNVI 1IQd / Y3AINI

8-24

sjutod younef pa3inqrIaistd
9
dssn ’asikaanN

NOILAYIVLSIAd LNIOd HONNVI
SOTIS ITISSIN 40 YILHWNN
TIAVT XTTdHOO HONNYI

VIVA XITdWOO HONNVI IINVJIA AV0ol

AdE-SN = STTISSTH TITdRNS = I¥se)
¢v0 QI Tsued

YIVad XATdWOO HONNVI

VLVANOILLYOOTHONNVT €1-8 3UNDIA

IIXI-NINLIY OL0D-0Td 21qel XAey-e¢d dIaH pPIa2Td-2d d{sH T@ued-1d4 3IIOqV-OS3

0000°06 = WnuTXeW 0000°06- = WNWTUTH :9nTepA Teay

v ‘0 000" 000" ot

v ‘0 000° 000" 6

Y ‘0 000" 000" 8

4 ‘0 000° 000° L

' *000T 0s0°08 056" VS 9

'/ *0001 000°08 066" ¥S S

v *000T 0G66°6L 066° VS v

\'{ *0001 060°08 0G0°SS €

\'{ *000T 000°08 060°SGS 4

' *000T 0S6°6L 0G60°GS T

3 (3+) bop (N+) bop

LHOITd ATISSINW J4anLILIV FANLIONOT 4aNLILV1 9TTSSTH
ot /9 = pP9309T19s ISqUNN A¥E-SN = O9TTISSTH TTIdHNS = 9SeD

€vo

:dI T™ued

V.IVd NOILVOOT HONNVI

8-25

OLOD-0T1d

NOILVIIAIDAJS NOLLVIOTIV AN PI-8 HUNDIA

NUSH utew-sd o1qel Koy-td dISH PI@Td-zd dYoH TouURd-Td 3IIOqV-OST
uotrido pa3ybITYLTY 309T9S 03 NUNLIAY SS°ad

81 : QILVOOTIV SAY J0 JIGHWNN

LIXd X-31IV

Z9a A9 VYIVd 1Iad / dAINT

9 : MOVILLY NI STIISSIN 40 JIAWAN

33 0T 18€2 : Z 1sdngd 40 IHO9IIH
33 01" 18€2 : 1 1s3dnd 40 IHOIFH
a3 00°000¢€ NOILVAATIA ANVISI 1IOUVL

VsSn ‘uxaylaonN TIAVYIT ANVISI LIDYVL

VIVd NOILVOOTIV A¥ J1INVJddad avol

AJE~-SNI = BTTISSTH TIIdWVS = 9se)D
9v0 :dI Td{ued

NOILVOIJIOIdS NOILYOOTIV AY

8-26

ITXFI-NANLIY OLOO-0Td

79d A9 NOILLVOO'I'TV AY SI-8 3UNDIA

arqel A9-gd4 dI®H PT@Td-Zd draH Taued-1d 3JI0qV-OST

0000° 06 = WNWTXeW 0000°06- = WUNWTUTKW tanTeA Te9d
T T 000" 000" 2zt
T T 000" 000" Tt
1 T 000° 000° 0T
Z T GL6°66- G26° LY 6
rd 1 000° 001~ GZ6° LY 8
4 T GZ0°00T- G2Z6° LY L
4 T ¥.6°66~- 000°8% 9
2 T 000°00T~ 000°8% S
4 T 920°00T~ 000°8% v
Z T v.6°66- GLO"8Y €
2 1 000°00T- GLO°8Y 4
Z T 920°00T- GLO8Y 1
(3+) bop (N+) boap
aaLvooTIvV SAY XAANI €OH JANLIONOT FANLILVI zZoa
0sz /6 = PO3OVTIS IAB3qUNN AME-SN = BITSSTH 1ATdWVS = 3¥sSeD
1Z/1 = I9qunN abed L¥0 :dI T3ued

290 Xd NOILVOOTIV Ad

8-27

A'NASNLV.LS WTV 91-8 HHNDIA

‘POYSTUTI WIV

*K1InIssaoons 27Td 9T3II0S BI0IM
*AT1InJssooons STTd YOe33V¥ 9230IM

*38TTd UoTILDOTTIV AY 3yl ut

par3jroads aaam (sAY 81) SaTISsIu 9

*pasn aq TITM (SAM 8T) sSaTTssTW 9

*SI0XXd ou YaTm aTTd A pead

*SI0JI® ou YIATM 3TTd Add pedy

*SI0II® OU Y3TM OTTJ I93s00gd pedqy

*SI0I3®@ OU Y3ITM 3TTJ uoT3ledoT youne] peay
*SI0II® OU Y3TM STTJ UOTILOOTIV A pPeay
*39[TJ-JO-pua ue ST

9TTd UOT3EDOTIV AY 9yl url 61 PIoday
*S103132 OU Y3TM 3TTd TOXU0D peay

*pI0031 3sel S,92TTd Toajuod ayly

wolJ peal aq TITM saade] uasmiaq saurl
‘patjToads aiam sTopouw apToTIjeII OU JDUTS
watqoad ardues Tenuel doUBUIIUTEW WIV

WIVY
ILIOSM
MOLLYM

SSHaJo
SSKQyo
1Idadd
IJdaddd
LS008Yd
ONNVIA
0TIV

0TIV
TdLNOY

TALNOA
TAINOH

68/22/21

68/22/21 8€£:00:L1
68/22/21T 8£:00:LT1
68/22/2T LE:00:LT
68/22/21 ¥6:6G:91
68/22/21 ¥6:65:91
68/22/21 1T¥:6G:91
68/22/21 1T¥:6G:91
68/22/21T 1¥:6G:91
68/22/2t 1T¥:6G:91
68/22/21 1T¥:6G:91
68/22/2T 1v:6G:91
68/22/21 0O¥:6G:91
68/22/2T 0%:66:91
68/22/2T 0v:6G:91
ov:6G:91 TATdNY

MNMOoOOITOOLTOO0O0O0O00O0OTOON

8-28

Northern, USA
.0
1809.5 1820
3 55.050
2 55.050
1 55.050
6 54.950
5 654.950
4 54.950
1 1809.5
2 1809.6
3 1809.6
4 1812.2
5 1812.2
6 1812.2
.0000
7 1814.0
.0000 .0000
8 1814.1
.0000 .0000
9 1814.1
.0000 .0000
10 1816.7
.0000 .0000
11 1816.7
.0000 .0000
12 1816.7
.0000 .0000
13 1818.1
.0000 .0000
14 1818.1
.0000 .0Q000
15 1818.1
.0000 .0000
16 1820.6
.0000 .0000
.0000
17 1820.6
.0000 .0000
.0000 .0000
18 1820.6
.0000 .0000
.0000 .0000

3000.US-3RV

.7 .7 .0

.6 11.2

80.050 .0

80.000 .2

79.950 .3

80.050 .5

80.000 .6

79.950 .7
1 2 48.075-100.026 1 3
2 2 48.075-100.000 1 2
J 2 48.075 -99.974 1 1
1 2 48.075-100.026 1 6
2 2 48.075-100.000 1 5
3 2 48.075 -99.974 1 4
4 2 —48.000-100.026 1 3
5 2 48.000-100.000 1 2
.0000
6 2 48.000 =-99.974 1 1
.0000 .0000
4 2 48.000-100.026 1 6
.0000 .0000 .0000
5 2 48.000-100.000 1 5
.0000 .0000 .0000 .0000
6 2 48.000 -99.974 1 4
.0000 .0000 .0000 .0000
7 2 47.925-100.025 1 3
.0000 .0000 .0000 .0000O
8 2 47.925-100.000 1 2
.0000 .0000 .0000 .0000
9 2 47.925 -99.975 1 1
.0000 .0000 .0000 .0000
9 2 47.925 -99.975 1 4
.0000 .0000 .0000 .0000
7 2 47.925-100.025 1 6
.0000 .0000 .0000 .0000
8 2 47.925-100.000 1 5
.0000 .0000 .0000 .0000
.0000

3 .0000

3 .0000

3 .0000

3 .0000

3 .0000

3 .0000

2 .0000

2 .0000

2 .0000

2 .0000

2 .0000

2 .0000
.0000

1 .0000
.0000

1 .0000
.0000

1 .0000
.0000

1 .0000
.0000

1 .0000
.0000

1 .0000
.0000

FIGURE 8-17 ATTACK FILE

8-29

2381.1 238
. 0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .00O0O0
.0000 .0000
.0000 .0000
.0000 .0000

114 ALLHOS 81-8HUNDIA

9Z0°00T-GLO "8V
9Z0°00T-000"8Y
GZ0°00T~S26°LY
000°001-GLO "8V
000°00T-000°8V
000°00T-G26° LY
vL6°66- SLO 8V
¥.6°66~ 000°8Y
GL6°66~ GT6°LY
9Z0°00T-GL0" 8V
920°001-000"8V
GZ0°00T-GZ6° LY
000°00T-GLO " 8Y
000°00T-000°8Y
000°00T-GZ6°LY
vL6°66~ SLO°8V
¥.6°66- 000°8Y
GL6°66- GT6°LY
AdE-SN dssn ‘aAskaann vsn ‘!

Hed A A A AANNANNNNNANN
NONNNNNNNNNNNNNNANNN
AVOOANLTAANANOYVMOD NN <~

13 9
[4 9
T 9
€ S
Z S
T S
€ v
Z 4
T 14
€ €
4 £
T €
€ 4
4 Z
8 4
€ T
[4 T
T T
uI9Y3ION

8-30

ATTACK DESCRIPTION BY MISSILE

Case = SAMPLE1l Missile System = US-3RV

Number of RVs = 18 Number of Missiles = 6

MISSILE LAUNCH TIME RV DGZ DOWNTIME LAYER
3 .0 3 1 1809.5 1
3 .0 2 4 1814.0 1
3 .0 1 7 1-18.1 1
2 .2 3 2 1809.6 1l
2 .2 2 S 1814.1 1
2 .2 1l 8 1818.1 1
1 .3 3 3 1809.6 1
1 .3 2 6 1814.1 1
1 .3 1 9 1818.1 1
6 .5 3 1 1812.2 2
6 «5 2 4 1816.7 2
6 .5 1 7 1820.6 2
5 «6 3 2 1812.2 2
5 .6 2 5 1816.7 2
5 .6 1 8 1820.6 2
4 .7 3 3 1812.2 2
4 .7 2 6 1816.7 2
4 o7 1 9 1820.6 2

FIGURE 8-19 ATTACK DESCRIPTION BY MISSILE

SECTIONY
COMPILING AND LINKING

9.1 COMPILING

The source code for the ALM CSC is
contained in eight separate files,
reflecting the CSC's overlay structure:

ALMROOT.FOR ALMOVR2B.FOR
ALMOVR1A.FOR ALMOVR2C.FOR
ALMOVR1B.FOR ALMOVR2D.FOR
ALMOVR2A.FOR ALMOVR3.FOR

The FORTRAN source file
containing each ALM module is listed in
Figure 9-1. The source file names are
meant to indicate the overlay structure
of the program; i.e. a root plus three
overlays. Because the source files for
overlays 1 and 2 grew too big to be added
conveniently, they were broken into
parts indicated by letters: e.g. 1A and
1B.

9-1

Each file is compiled (and the
resulting object files are linked) using a
MAKE description file (ALM.MAK).
See Chapter 14 “Automating Program
Development with MAKE"” in Reference
1. The MAKE description file is shown
in Figure 9-2. It invokes a second
MAKE description file (X.CMP) to
compile each FORTRAN source file. The
one-statement file, X.CMP, is shown in
Figure 9-3.

9.2 LINKING

The LINK statement at the end of
ALM.MAK invokes a response file,
shown in Figure 9-4. See Section 12.1.4
“Linking with a Response File” in
Reference 3.

MODULE SOURCE FILE MODULE | SOURCE FILE
ALM ALMROOT.FOR FXLYRS ALMOVR2C.FOR
ABRTRN ALMROOT.FOR GETSRT ALMOVR2C.FOR
ADDGZ1 ALMOVR2A.FOR GTBLY2 ALMOVR2C.FOR
ADDGZ2 ALMOVR2A.FOR GTBLYR ALMOVR2C.FOR
ADJST1 ALMOVR2A.FOR MOPUP ALMOVR2C.FOR
ADJST4 ALMOVR2A.FOR MOPUPA ALMOVR2C.FOR
ADJST5 ALMOVR2A.FOR MOPUPB ALMOVR2C.FOR
ADLAYR ALMOVR2A.FOR MOPUPC ALMOVR2C.FOR
ADXTRA ALMOVR2A.FOR MOVLFT ALMOVR2C.FOR
ASR2T?2 ALMOVR2A.FOR MULSRT ALMOVR2C.FOR
ASR2TI ALMOVR2A.FOR ORDDGS ALMOVR2C.FOR
CHKMLT ALMOVR2A FOR ORDMSS ALMOVR2C.FOR
CHKSRT CHKSRT.FOR PREPAR ALMOVERS3.FOR
CHKTMS ALMOVR2A FOR RALLOC ALMOVRI1A.FOR
CHKWST ALMOVR2A . FOR RBOOST ALMORV1A.FOR
CROSRT ALMOVR2B.FOR RCNTRL ALMOVRI1A. FOR
CSTOUT ALMOVR2B.FOR RPBVFI ALMOVRI1B.FOR
CTRVS ALMOVR2B.FOR RRVFIL ALMOVRI1B.FOR
CTUNIQ ALMOVR2B.FOR RSSAFE ALMOVRI1B.FOR
CTUNUS ALMOVR2B.FOR SPLSRT ALMOVR2D.FOR
DPATTA ALMROOT.FOR SQUEE2 ALMROOT.FOR
DPCNTR ALMROOT.FOR SQUEE3 ALMROOT.FOR
DPLC ALMRQOT.FOR SQUEEZ ALMOVR2D.FOR
DPOPSH ALMROOT.FOR SRTSR2 ALMOVR2D.FOR
DPSORT ALMROOT.FOR SRTSR3 ALMOVR2D.FOR
DPTI ALMROOT.FOR SRTSRT ALMOVR2D.FOR
DPWEAP ALMROOT.FOR STRSRT ALMOVR2D.FOR
DWNSRT ALMOVR2B.FOR SWPSRT ALMOVR2D.FOR
FMABAB ALMOVR2B.FOR SYNEZY ALMOVR2D.FOR
FMABBA ALMOVR2B.FOR SYNTIM ALMOVR2D.FOR
FNFRTH ALMOVR2B.FOR TRYFLY ALMOVRI1B.FOR
FNHIGH ALMOVR2B.FOR UNDO ALMOVR2D.FOR
FNPREV ALMOVR2B.FOR UPRSRT ALMOVR2D.FOR
FNVRTS ALMOVR2B.FOR WSORTI ALMOVER3.FOR

FIGURE 9-1 FORTRAN SOURCE FILES
9-2

#ALM.MAK

ALMROOT.OBJ: ALMROOT.FOR
MAKE X=ALMROOT X.CMP

ALMOVR1A.OBJ: ALMOVRI1A.FOR
MAKE X=ALMOVR1A X.CMP

ALMOVR1B.OBJ: ALMOVRI1B.FOR
MAKE X=ALMOVR1B X.CMP

ALMOVR2A.0BJ: ALMOVRZ2A.FOR
MAKE X=ALMOVR2A X.CMP

ALMOVR2B.OBJ: ALMOVRZ2B.FOR
MAKE X=ALMOVR2B X.CMP

ALMOVR2C.OBJ: ALMOVR2C.FOR
MAKE X=ALMOVR2C X.CMP

ALMOVR2D.OBJ: ALMOVR2D.FOR
MAKE X=ALMOVR2D X.CMP

ALMOVER3.0BJ: ALMOVER3.FOR
MAKE X=ALMOVER3 X.CMP

ALM.EXE: ALMROOT.OBJ ALMOVR1A.OBJ ALMOVR1B.OBJ ALMOVR2A.OBJ\
ALMOVR2B.OBJ ALMOVR2C.OBJ ALMOVR2D.OBJ ALMOVER3.OBJ\
\MPS\TARGET.LIB \MPS\MPS.LIB

LINK /E /F /PAC /SE:140 @ALM.LNK

FIGURE 9-2 MAKE DESCRIPTION FILE (ALM.MAK)

9-3

OINTWIV) X' 11A ASNOJSHY HAXNIT ¥-6 HUNDIA

TAN

SAW\ SAN\ +LIADYVIL\LIDUVYI\

TNN

IXd "WIV

{(CAAAOWIV) + (AZHAOWIY+I ZUAOWIV+HZHAOWIVHYZHAOWIY) + (A TIAOWIV+YTIAOWIVY) +LOOUNWIY

(dIWDX) W 1A NOLLATHDSHUA UMVIN €6 LHNDI

dod* (X)$ w¥0d- (X)$uwds/ 8Lds/ 0011S/ %0/ 29/ L8Tdd/ sda/ o/ PAav/ 2Iv/ 14
dod-© (X)$:rdgo0°(X)$

dWO "X #

9-4

SECTION 10
REFERENCES

Microsoft FORTRAN 4.1 Optimizing Compiler, Code View and Uti..ties
Manual, Microsoft Corporation, 1987.

MPS Accessibility Computer Software Component - TARGET - Maintenance

Manual (MM-05), K-89-59U(R), Kaman Sciences Corporation, 16 January
1990.

MPS Support Software - UTILITIES - Maintenance Manual (MM-01),
K-89-55U (R), Kaman Sciences Corporation, 16 January 1990.

10-1

APPENDIX A
MODULE LIST

The module list, presented in this
Appendix, identifies all modules used in
the ALM CSC except for those TARGET
CSD modules that are used by module
CHKSRT to evaluate missile sortie
feasibility. The reader is refer-ed to
Reference 2 for a description of the
TARGET modules used by CHKSRT.

In this module list, modules are
identified as either the main program

(indicated by an M in the Module Type
column), a subroutine (indicated by an
S), or a function (indicated by an F).
Subroutines and functions in the MPS
Utilities Library, that are used by the
ALM CSC, are indicated by an asterisk:
see Reference 3 for detailed descriptions
of these modules.

MODULE

MODULE | "pypg DESCRIPTION

ABRTRN S Aborts the run (writes warning message, dumps all
COMMON blocks, writes error message, and stops).

ADDGZ1 S Adds a DGZ from target island to the current sortie.

ADDGZ2 S Adds a DGZ from list of unique DGZs to the current
sortie.

ADJST1 S Adjusts launch times and downtimes for all layers beyond
the first.

ADJST4 S Adjusts a missile's launch time and its RVs' downtimes.

ADJST5 S Adjusts launch times and downtimes for all first-layer
missiles.

ADLAYR S Adds RVs from subsequent layers to DGZs in a sortie, to
use up a missile load.

ADXTRA S Adds extra RVs to most valuable DGZs in a sortie, to use
up a missile load.

ALM M Assigns RVs to DGZs and schedules missile launches.

ASR2T2 S Assigns RVs to DGZs in the target island.

ASR2TI S Prepares to as-ign RVs, assigns RVs, adjusts launch
times and downtimes, and fixes layer numbers.

ATAN2D* F Computes the angle, in degrees, whose tangent is the
ratio of the two input arguments.

CDSTNC* S Computes the distance between two points in
3-dimensional space.

CHKMLT S Checks variations of a multi-layer sortie.

CHKSRT S Checks a sortie to see if a missile can successfully drop its
RVs on the DGZs in the sortie.

CHKTMS S Checks downtimes for all RVs in the current sortie that
go to the same DGZ.

CHKWST S Sees if current sortie wastes RVs.

CMEAN* F Computes the mean of an array of values.

CPCNTR* S Computes the centroid of a set of points in a plane.

CROSRT S Forms a crossrange sortie.

CSTOUT S - Marks one of the DGZs in the current sortie as an outcast.

CTRVS S Counts the total number of RVs still to be assigned to

DGZs (that aren't outcasts).

ALM MODULE LIST

MODULE

MODULE TYPE DESCRIPTION

CTUNIQ S Counts unique DGZs in a sortie.

CTUNUS S Counts unused missiles in the launch complex.

DFTPCS* S Defines a tangent-plane coordinate system.

DPATTA S Dumps the contents of COMMON block /ATTACK.

DPCNTR S Dum?{sb};he contents of COMMON blocks /(CNTROL/ and
/ICSTRNG/.

DPLC S Dumps the contents of COMMON blocks /L.C/ and
/LSTRNG/.

‘DPOPSH S Dumps the contents of COMMON block /OPSHNS/.

DPSORT S Dumps the contents of COMMON block /SORTIE/.

DPTI S Dumps the contents of COMMON blocks /T1/ and
TSTRNG/.

DPWEAP S Dumps the contents of COMMON block /WEAPON/.

DWNSRT S Sorts a subset of the sortie lists so X-coordinates are in
downrange order.

FBRVAL* S Finds two values in an array that bracket a third value.

FCVPOL* S Finds the convex polygon enclosing a set of points.

FEXT* S Finds the extremes in an array of real values.

FMABAB S Forms a sortie that moves uprange, returns to the
beginning, and moves uprange again.

FMABBA S Forms a sortie that moves uprange, turns around, and
then moves downrange.

FMAX* S Finds the maximum in a set of real values.

FMIN* S Finds the minimum in a set of real values.

FNFRTH S Finds the DGZ in the current sortie that's furthest from
the sortie's mean Y-coordinate.

FNHIGH S Finds the hifhest. layer number among all RVs attacking
the target island.

FNORM* F Forms the norm (resultant/magnitude) of a
3-dimensional vector.

FNPREV S- Finds the RV that hit a DGZ and was a member of the

previous layer.

ALM MODULE LIST (Continued)

MODULE

MODULE | "rvpE DESCRIPTION

FNVRTS S Finds the DGZs that are the vertices of a convex polygon
enclosing the target island.

FXLYRS S Fixes layer numbers for the sequence of RVs attacking
each DGZ.

GETSRT S Gets DGZs for a strict uprange sortie.

GTBLYR S Gets time between layers from list supplied in the
Control File.

GTBLY?2 S Gets time between layers from list of sure-safe times read

) from Fratricide Constraints files.

IFMIN* S Finds the minimum value in a list of integers.

INTRPL* F Linearly interpolates between (or extrapolates beyond)
two elements of a one-dimensional real array.

ISWAP* S Swaps two INTEGER*2 values.

MOPUP S Assigns RVs on remaining missile(s) to DGZs.

MOPUPA S Assigns RVs to DGZs that didn't get any RVs at all.

MOPUPB S Assigns RVs to DGZs in the sortie that was "short-
changed" the most.

MOPUPC S Assigns RVs to the most valuable sortie.

MOVLFT S Moves pointer to DGZ immediately to the left of the
leftmost DGZ in the current sortie.

MULSRT S Forms a multi-layer sortie from an uprange sortie by
reassigning one DGZ's RVs to other DGZs in the sortie.

ORDDGS S Orders DGZs; i.e. forms a list of pointers so DGZs can be
accessed from right to left.

ORDER* S Forms a list of pointers so an array of real numbers can be
accessed in ascending or descending order.

ORDMSS S Orders missiles; i.e. forms list of pointers that specifies
the order in which missiles should be used.

ORDNAL* F Returns suffix ("st", "nd", "rd", or "th") corresponding to
an integer.

PR1PNT* S Projects one point on the earth's surface onto a plane

tangent to the earth.

ALM MODULE LIST (Continued)

MODULE

MODULE TYPE DESCRIPTION

PRPNTS* S Projects a set of points on the earth's surface onto a plane
tangent to the earth.

PREPAR S Prepares data for the Attack File.

RALLOC S Reads RV Allocation File.

RBOOST S Reads Booster Data File.

RCNTRL S Reads Control File.

RLAUNC S Reads Launch Location File.

RMBLKS* S Removes all blanks from a string.

RMLEAD* S Removes leading blanks from a string.

RPBVFI S Reads PBV Data File.

RRVFIL S Reads RV Data File.

RSSAFE S I}e}ads sure-safe time from each Fratricide Constraints

ile.

SPLSRT S Splits sortie into two halves.

SQBLKS* S Squeezes multiple blanks in a string to single blanks.

SQUEEZ S Forms a list of unique DGZs in a sortie.

SQUEE2 S Squeezes multiple blanks from the message buffer and
then write a Status File Message.

SQUEE3 S Squeezes multiple blanks from the message buffer and
then displays message.

SRTSRT S Sorts a portion of each list of sortie data so X-coordinates
are in descending order.

SRTSR2 S Sorts a section of the sortie lists so integers in one of the
lists are in ascending order.

SRTSR3 S Sorts the sortie lists so DGZ values are in ascending
order.

STRSRT S Stores successful sortie data in arrays corresponding to
missile.

SWAP+* S Swaps two real values.

SWPSRT S Swaps two sets of entries in the sortie lists.

SYNEZY S Synchronizes downtimes for RVs in the first layer, for the

easy situation where time between launches is zero.

ALM MODULE LIST (Continued)

aw | MODULE
MODULE | “pypE DESCRIPTION

SYNTIM S Synchronizes downtimes for RVs in the first layer.

TRULEN* F Finds the true length of a string (ignores trailing spaces
and or nulls).

TRYFLY S Tries to fly a missile from the silo closest to the target
island, so it drops all its RVs on the DGZ furthest from
the launch complex.

UNDO S Undoes a sortie that failed; i.e. resets launch time and
number of RVs assigned so far to their original values.

UPSRT S Sorts a subset of the sortie lists so X-coordinates are in
up-range order.

WATTCK* S Writes the Attack File.

WSORTI S Writes the Sortie File.

WRSFFR* S Writes the Status File's first record.

WRSFMS* S Writes a Status File message.

ALM MODULE LIST (Concluded)

APPENDIX B
MODULE CROSS-REFERENCE

This appendix provides a module cross- modules that call it and the modules it
reference. For each module in the ALM calls. Modules preceded by an asterisk
CSC, this cross reference identifies the are in the MPS Ultilities Library.

MODULE CALLED BY CALLSTO
ABRTRN [ADDGZ! ADDGZ2 ADJST1 DPATTA DPCNTR DPLC DPOPSH
ADLAYR ADXTRA FNPREV | DPSORT DPTI DPWEAP *WRSFMS
GETSRT GTBLYR MOPUP
MOPUPC MOVLFT ORDMSS
PREPAR RSSAFE
ADDGZ1 ADLAYR ADXTRA GETSRT | ABRTRN SQUEE2 *WRSFMS
MOPUPA MOPUPB MOPLPC
MULSRT
ADDGZ2 |FMABAB FMABBA ABRTRN SQUEE2 *WRSFMS
ADJSTI ASR2TI ABRTRN ADJST4 FNHIGH
FNPREV GTBLY2 GTBLYR
SQUEE2 *WRSFMS
ADJST4 ADJST1 ADJSTS
ADJST5 SYNTIM ADJST4
ADLAYR |GETSRT ABRTRN ADDGZ1 SQUEE2 *WRSFMS
ADXTRA |GETSRT ABRTRN ADDGZ1 SQUEE2 SRTSR3
*WRSFMS
ALM - ASR2TI PREPAR RALLOC RBOOST
RCNTRL RLAUNC RPBVFI RRVFIL
RSSAFE TRYFLY *WATTCK *WRSFMS
WSORTI
ASR2T2 ASR2TI CHKMLT CHKSRT CHKWST CROSRT
CSTOUT CTRVS CTUNIQ DWNSRT
GETSRT MOPUP MOVLFT MULSRT
*ORDNAL SPLSRT SQUEE3 STRSRT
UNDO UPRSRT
ASR2TI ALM ADJST1 ASR2T2 FNVRTS FXLYRS
ORDDGS ORDMSS SYNTIM
CHKMLT JASR2T2 MOPUPA CHKSRT CHKTMS FMABAB FMABBA
SRTSRT
CHKSRT |JASR2T2 CHKMLT MOPUPB | (Modules are in TARGET Library)
MOPUPC TRYFLY
CHKTMS JCHKMLT GTBLYR
CHKWST JASR2T2 -

ALM MODULE CROSS REFERENCE

MODULE CALLED BY CALLSTO
| _CROSRT JASR2T?2 *FMAX _ SWPSRT
CSTOLT |ASR2T2 *FNORM SQUEE2

CTRVS ASR2T2 GETSRT -

CTUNIQ |JASR2T2 GETSRT MULSRT {-

CTUNLS |[MOPUP -

DWNSRT |ASR2T2 *FMIN SWPSRT
FMABAB |CHKMLT ADDGZ2 SQUEEZ
FMABBA |CHKMLT ADDGZ2 SQUEEZ ‘

FNFRTH |MULSRT -

FNHIGH {ADJSTI -

FNPREV ADJSTI1 ABRTRN SQUEE2 *WRSFMS

FNVRTS |[ASR2TI *FCVPOL *PRPNTS

FXLYRS [ASR2TI *ORDER

GETSRT |ASR2T2 ABRTRN ADDGZ1 ADLAYR ADXTRA
CTRVS CTUNIQ SQUEE2 SRTSRT
*WRSFMS

GTBLY2 JADJST1 -

GTBLYR |ADJST1 CHKTMS ABRTRN SQUEE2 *WRSFMS

MOPLP ASR2T2 ABRTRN CTUNUS MOPUPA MOPUPB
MOPUPC *WRSFMS

MOPUPA |MOPLP ADDGZ1 CHKMLT SRTSR3 SRTSRT
STRSRT UNDO

MOPUPB |MOPLP ADDGZ1 CHKSRT STRSRT UNDO

MOPUPC {MOPLP ABRTRN ADDGZ1 CHKSRT STRSRT
UNDO *WRSFMS

MOVLFT |ASR2T2 ABRTRN *FMIN SQUEE2 *WRSFMS

MULSRT {ASR2T2 ADDGZ1 *CPCNTR CTUNIQ FNFRTH
SQUEEZ

ALM MODULE CROSS REFERENCE (Continued)

MODULE CALLED BY CALLSTO
ORDDGS |ASR2TI *ORDER *PRPNTS
ORDMSS |ASR2TI ABRTRN *ISWAP *ORDER *PLURAL
*PRPNTS *RMLEAD SQUEE2 *WRSFMS
PREPAR |ALM ABRTRN *FMIN *ISWAP SQUEE2
*SWAP *WRSFMS
RALLOC |ALM *CPCNTR *ORDNAL *PLURAL *RMLEAD
*TRULEN *WRSFMS
RBOOST |ALM SQUEE2 *TRULEN *WRSFMS
RCNTRL |aLM *ORDNAL *RMBLKS *RMLEAD SQUEE2
*SUM *WRSFFR *WRSFMS
RLAUNC |ALM *CMEAN *CPCNTR *ORDNAL *PLURAL
*RMLEAD SQUEE2 *TRULEN *WRSFMS
RPBVFI |ALM SQUEE2 *TRULEN *WRSFMS
RRVFIL [ALM SQUEE2 *TRULEN *WRSFMS
RSSAFE |ALM ABRTRN *ORDNAL SQUEE2 *TRULEN
*WRSFMS
SPLSRT |ASR2T2 *CDSTNC *FEXT SRTSRT SWPSRT
SQUEE2 |ADDGZ1 ADDGZ2 ADJSTI |*SQBLKS *WRSFMS
ADLAYR ADXTRA CSTOUT
FNPREV GETSRT GTBLYR
MOVLFT ORDMSS PREPAR
RALLOC RBOOST RCNTRL
RLAUNC RPBVFI RRVFIL
RSSAFE _TRYFLY WSORTI |
SQUEE3 |ASR2T?2 *5QBLKS
SQUEEZ |FMABAB FMABBA MULSRT | SRTSRT
SRTSR2 |SRTSRT *IFMIN SWPSRT
SRTSR3 [ADXTRA MOPUPA SWPSRT
SRTSRT |CHKMLT GETSRT MOPUPA|SRTSR2 UPRSRT
STRSRT |ASR2T2 MOPUPA MOPUPB|-
MOPUPC

ALM MODULE CROSS REFERENCE (Continued)

MODULE| CALLED BY CALLSTO
SWPSRT [CROSRT DWNSRT SPLSRT | *ISWAP *SWAP
SRTSRZ SRTSR3 UPRSRT
SYNEZY [ISYNTIM ADJST4
SYNTIM |ASR2TI ADJST5S SYNEZY
TRYFLY [ALM CHKSRT *FMAX *PRPNTS
SQUEE2
UNDO ASR2T2 MOPUPA MOPUPB | -
MOPUPC
UPRSRT |ASR2T2 SRTSRT sFMAX SWPSRT
WSORTI |ALM " | SQUEE2

ALM MODULE CROSS REFERENCE (Concluded)

APPENDIX C
MODULE DESCRIPTIONS

The module descriptions contained in
this appendix are confined to those mod-
ules that are unique to the ALM CSC.
Modules (subroutines and functions)
used in ALM that are part of the MPS
Utilities are described in Reference 3.
Modules shared by the ALM and
TARGET CSCs are described in
Reference 2.

A set of modules whose names have
the form DPxxxx are NOT described in
this appendix. Each module dumps the

contents of a COMMON block when the
ALM aborts (the string “xxxx” is usually
the first four characters of the block’s
name). Because each module consists
only of print and format statements they

are not described in detail.

A special module, CHKSRT, is
described in this document, even though
the source code resides in the TARGET
directory. CHKSRT is an interface
between the ALM and modules shared
by TARGET and ALM.

ALM

PROGRAM ALM

Purpose. To assign RVsto DGZs and to schedule missile launch times.

Input Arquments:

None

Output Arguments:

None

Modules Called:

ASR2TI
PREPAR
RALLOC
RBOOST
RCNTRL
RLAUNC
RPBVFi

RRVFIL
RSSAFE
TRYFLY
WATTCK (MPS Library)
WRSFMS (MPS Library)
WSORTI

Calling Modules:

None

Common Blocks Used:

Block $INCLUDE Block

ATTAKK CBATTACK.FOR OPSHNS
CNTROL CBCNTROL.FOR SORTEE
CSTRNG CBCSTRNG.FOR T

LC CBLC.FOR TSTRNG
LSTRNG CBLSTRNG.FOR WEAPON

$INCLUDE

CBOPSHNS.FOR
CBSORTIE.FOR
CBTI.LFOR
CBTSTRNG.FOR
CBWEAPON.FOR

ALM

File Input/Qutput:

None

FORTRAN 77 Exceptions:

1. Uses “*” typing for variables.
2. Uses $INCLUDE statement.

Description:

Program ALM is the main driver for the MPS assignment function.
This program and its subroutines assign RVs to DGZs and schedule missile
launch times to generate a timed laydown. The program calls
subroutines to read the Control File, RV Allocation File, Launch Location
File, Booster Data File, PBV Data File, and RV Data File. Then the
program tries to fly the missile closest to the target island so that all its
RVs fall on the DGZ farthest from the launch complex. If the trial flight
fails, ALM stops. Otherwise, if the user has supplied the names of some
Fratricide Constraints Files, the program reads the sure-safe time from
each file to use as times between layers. Then the program calls the
major subroutine ASR2TI to assign RVs to the target island and schedule
launches. Next, ALM prepares data for the Attack File and writes the
file. Finally, the program writes the Sortie File and the success message
required for the Status File.

Source File:

ALMROOT.FOR

ABRTRN

SUBROUTINE ABRTRN
Purpose: To abort the run.

Input Arguments:

None

Qutput Arguments:

None

Modules Called:

DPATTA DPSORT

DPCNTR DPTI

DPLC DPWEAP

DPOPSH WRSFMS (MPS Library)

Calling Modules:

ADDG21 GTBLYR
ADDGZ2 MOPUP
ADJST1 MOPUPC
ADLAYR MOVLFT
ADXTRA ORDMSS
FNPREV PREPAR
GETSRT RSSAFE

Common Blocks Used:

None

File Input/Qutput:

None

”‘

ABRTRN

FORTRAN 77 Exceptions:

wen

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ABRTRN writes a warning message to the Status File,
indicating the contents of all COMMON blocks will be written, as
information messages, in the Status File. ABRTRN then proceeds to do
exactly that. Finally, the subroutine writes the error message required
for the Status File and stops.

Source File:

ALMROOT.FOR

ADDG21

SUBROUTINE ADDGZ1 (IS, ID)

Purpose: To add a DGZ to the current sortie.

Input Arguments:

Variable Type

IS INTEGER*2
iD INTEGER*2
QOutput Arguments:
None

Modules Called:

ABRTRN
SQUEE2

WRSFMS (MPS Library)

Calling Modules:

ADLAYR MOPUPB
ADXTRA MOPUPC
GETSRT MULSRT

MOPUPA

Description

Sortie index; i.e., slot in which to store next
set of sortie data. Ranges from 1 through
number of RVs on a weapon.

Index of DGZ to add to sortie; ranges from 1
through number of DGZs in target island.

ADDG21

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

OUTPUT CBOUTPUT.FOR TI CBTIL.LFOR
SORTEE CBSORTIE.FOR WEAPON CBWEAPON.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*” typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADDGZ1 first checks the sortie index. If it's bad, ADDGZ1
writes a warning message and then calls ABRTRN to abort the run. The
subroutine also checks the DGZ index and takes similar action if it's bad.
Otherwise, ADDGZ1 stores the DGZ index in the list of DGZ indices for
the sortie and increments the number of RVs assigned to the DGZ so far.
If the maximum number of layers is exceeded, ADDGZ1 writes a warning
message and calls ABRTRN to abort the run. If not, ADDGZ1 stores the
number of RVs in the list of layer numbers for the sortie. Finally,
ADDGZ1 stores the DGZ's latitude, longitude, X-coordinate, and
Y-coordinate in the appropriate sortie lists.

Source File:

ALOVR2A.FOR

ADDGZ22

SUBROUTINE ADDGZ2 (IS, IU)

Purpose: To add a DGZ, from the list of unique DGZs, to the current

sortie.

input Arguments:

Variable Type

IS INTEGER*2
U INTEGER*2
Output Arguments:
None

Modules Called:

ABRTRN
SQUEE2
WRSFMS (MPS Library)

Calling Modules:

FMABAB
FMABBA

Common Blocks Used:

Block $INCLUDE

Description

Sortie index; i.e., slot in which to store next
set of sortie data. Ranges from 1 through
number of RVs on a weapon.

index for list of unique DGZs. Ranges from 1
through number of RVs per weapon.

Block $INCLUDE

OUTPUT CBOUTPUT.FOR TI CBTIL.FOR
SORTEE CBSORTIE.FOR WEAPON CBWEAPON.FOR

ADDG22

File Input/Qutput:

None

FORTRAN 77 Exceptions:

1. Uses “*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADDGZ2 first checks the sortie index. If it's bad, ADDGZ2
writes a warning message and then calls ABRTRN to abort the run. The
subroutine also checks the unique DGZ index and takes similar action if
it'sbad. Otherwise, ADDGZ2 gets values corresponding to the DGZ from
lists of unique DGZ data and stores the values in corresponding lists of
sortie data.

Source File:

ALMOVR2A FOR

ADJST1

SUBROUTINE ADJST1

Purpose: To adjust launch times and downtimes for all layers beyond
the first.

input Arguments:

None

Qutput Arguments:

None

Modules Called:

ABRTRN GTBLY2
ADJST4 GTBLYR
FNHIGH SQUEE2
FNPREV WRSFMS (MPS Library)

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE Block $INCLUDE
CNTROL CBCNTROL.FOR Tl CBTL.FOR
LC CBLC.FOR WEAPON CBWEAPON.FOR

OUTPUT CBOUTPUT.FOR

File Input/Output:

None

ADJST1

FORTRAN 77 Exceptions:

Hin

1. Uses typing for variables.
2. Uses $SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADJST1 first finds the highest layer number in the entire
attack. Then ADIJST1 executes a loop over all layers from the second
through the highest.

At the beginning of each pass through the loop, ADJST1 forms the
number of the previous layer. If no CAIN models (Fratricide Constraints
Files) were read, ADJST1 gets the time between the previous and current
layers from the list on the Control File's last record. If the time between
launches is greater than this value, the time between launches is used
instead.

ADJST1 executes an inner loop over all missiles used. At the
beginning of each pass, ADJST1 checks to see if Fratricide Constraints
Files were read. If so, the time between the previous and current layers
is revised. Then, ADJST1 executes another inner loop, over the RVs on
the missile. ADIJST1 computes the difference in downtimes between
each RV on the current missile, and the previous RV attacking the RV’s
DGZ. The smallest difference is saved.

If the smallest difference is greater than the time between layers,
ADJST1 proceeds to the next missile. If not, ADJST1 adjusts the current
missile’s launch time. If the time between launches isn’t zero, ADJST1
also adjusts the launch times of every missile launched after the current
missile.

After examining all missiles used in each layer, ADJST1 returns.

ADIJST1

Source File:

ALMOVR2A.FOR

ADJSTA

SUBROUTINE ADJST4 (AJSMNT, IM, NRVS)

Purpose: To adjust launch times and downtimes for one missile.

Input Arguments:

Variakle Type

AJSMNT REAL*4

M INTEGER*2
NRVS INTEGER*2

Qutput Arguments:

None

Modules Called:

None

Calling Modules:

ADIJST1
ADJSTS

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR

File Input/Output:

None

Description

Delta-time to add to launch and
downtimes (seconds).

Missile index. -
Number of RVs on missile.

ADJST4

FORTRAN 77 Exceptions:

" u

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADJST4 first adds the adjustment to the missile's launch
time. Then it adds the adjustment to each RV's downtime.

Source File:

ALMOVR2A.FOR

ADIJSTS

SUBROUTINE ADJST5 (NRVS, LATEST)

Purpose: To adjust launch times and downtimes for all first-layer
missiles, when the time between launches is non-zero. The
objective is to minimize the span of downtimes.

Input Arguments:

Variable Type

NRVS INTEGER*2
LATEST REAL*4

Qutput Arguments:

None

Modules Called:

ADJST4

Calling Modules:

SYNTIM

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR

Description

Number of RVs on each missile.
Latest downtime (seconds) among all
first-layer RVs.

WEAPON CBWEAPON.FOR

File Input/Qutput:

None

ADIJSTS

FORTRAN 77 Exceptions:

g

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADJSTS minimizes the span of downtimes by matching
missiles with longer times-of-flight with earlier launch times, and
missiles with shorter times-of-flight with later launch times.

ADIJSTS first examines each first-layer missile, storing the missile index
in one list and the launch time in another. The list of launch times is
sorted so launch times are in DESCENDING order. The list of missile
indices is sorted so the downtimes of th~ first RV to arrive from each
missile are in ASCENDING order. Then ADIJST5 executes a loop that
subtracts each missile’s original launch time from, and adds the new
sorted laurch time to, the downtime of each RV on the missile. Finally,
ADJSTS5 replaces each missile’s original launch time with the new sorted
launch time.

Source File:

ALMOVR2A.FOR

ADLAYR

SUBROUTINE ADLAYR (IS, NRVS)

Purpose: To add RVs from subsequent layers to DGZs in a sortie, to use
up a missile load.

Input Arguments:

Variable Type Description
{S INTEGER*2 Index for next entry in sortie data lists.
, Must be greater than 1.
NRVS INTEGER*2 Number of RVs on missile performing
sortie.

Output Arguments:

Variable Type Description

IS INTEGER*2 Index for next entry in sortie data lists. The
input argument is incremented each time a
DGZ is added to the sortie.

Modules Called:

ABRTRN SQUEE2
ADDGZ1 WRSFMS

Calling Modules:

GETSRT

ADLAYR

Common Blocks Used:

Block $INCLUDE
OUTPUT CBOUTPUT.FOR
SORTEE CBSORTIE.FOR
TI CBTI.FOR

File Input/Qutput:

None

FORTRAN 77 Exceptions:

1. Uses “*” typing for variables.
2. Uses $SINCLUDE, $PAGE, and $SUBTITLE metacommandes.

Description:

Subroutine ADLAYR first checks the input argument IS. If it's less than
or equal to 1, or greater than the maximum number of RVs on a missile,
ADLAYR writes a warning message in the Status File. It also writes
information messages containing the bad sortie index and maximum
number of RVs per missile. Then ADLAYR calls ABRTRN to abort the run.

ADLAYR performs the same pair of checks on the input argument
NRVS. If it's bad, ADLAYR writes a similar sequence of Status File
messages and calls ABRTRN.

Otherwise, ADLAYR defines the start and stop indices for data
already in the sortie lists. The start index is simply 1, and the stop index
is IS-1. Then ADLAYR sets a second list index, a search index called JS,
equal to the start index, and zeros a counter of DGZs added to the lists.
ADLAYR loops through the DGZs already in the sortie, looking for one
that needs another RV. If no such DGZ is found, ADLAYR returns.

ADLAYR

But if such a DGZ exists, it's added to the sortie, the counter of DGZs
added is incremented, and the sortie index is incremented. If the sortie
is complete (i.e., if all RVs on the missile have been used), control returns
to GETSRT. Otherwise, the search index, JS, is incremented. If all of the
original DGZs in the sortie have been examined, and no DGZ was added,
control returns to GETSRT. Otherwise, the search index is reset to the
first original DGZ in the list and another pass is made. If there’s still
another original DGZ in the current pass to examine, it's examined.

Source File:

ALMOVR2A.FOR

ADXTRA

SUBROUTINE ADXTRA (IS, NRVS)

Purpose: To add RVs to the most valuable DGZs in a sortie, to use up a
missile load.

input Arguments:

Variable Type Description

1S INTEGER*2 Index for next entry in sortie data lists.
Must be greater than 1. -

NRVS INTEGER*2 Number of RVs on missile performing
sortie.

Output Arguments:

Variable Type Description

IS INTEGER*2 Index for next entry in sortie data lists. The
input argument is incremented each time a
DGZ is added to the sortie.

Modules Called:

ABRTRN SRTSR3
ADDGZ1 WRSFMS
SQUEE2

Calling Modules:

GETSRT

ADXTRA

Common Blocks Used:

Block $INCLUDE

OUTPUT CBOUTPUT.FOR
SORTEE CBSORTIE.FOR

File input/Output:

None
FORTRAN 77 Exceptions:
1. Uses “*” typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ADXTRA first checks the input argument IS. If it's less
than or equal to 1,or greater than the maximum number of RVs on a
missile, ADXTRA writes a warning message in the Status File. It also
writes information messages containing the bad sortie index and
maximum number of RVs per missile. Then ADXTRA calls ABRTRN to
abort the run.

ADXTRA performs the same pair of checks on the input argument
NRVS. If it's bad, ADXTRA writes a similar sequence of Status File
messages and calls ABRTRN.

Otherwise, ADXTRA defines the start index for data already in the
sortie lists. The start index is IS-1, because DGZs in the sortie will be
selected in reverse order. Then ADXTRA sorts the sortie lists so DGZ
values are in ascending order.

Next, ADXTRA sets a second list index, JS, equal to the start index.
ADXTRA loops backwards through the DGZs already in the sortie, from

ADXTRA

most to least valuable, adding each DGZ to the sortie. If the sortie is
complete (i.e., if all RVs on the missile have been used), control returns
to GETSRT. Otherwise, the second index, JS, is incremented. If all of the
original DGZs in the sortie have been examined, JS is reset to the start of
the sorted lists and another pass is made. If there's still another original
DGZ in the current pass to examine, it's examined.

Source File:

ALMOVR2A.FOR

ASR2T2

SUBROUTINE ASR2T2

Purpose: To form sorties for each missile that should be used.

input Arguments:

None

Output Arguments:

None

Modules Called:

CHKMLT CROSRT CTUNIQ MOPUP ORDNAL STRSRT
CHKSRT CSTOUT DWNSRT OMVLFT SPLSRT UNDO
CHKWST CTRVS GETSRT MULSRT SQUEE3 UPRSRT

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE Block $INCLUDE
LC CBLC.FOR SORTEE CBSORTIE.FOR
OPSHNS CBOPSHNS Tl CBTILFOR

OUTPUT CBOUTPUT.FOR WEAPON CBWEAPON.FOR

File Input/Qutput:

None

ASR2T2

FORTRAN 77 Exceptions:

g

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ASR2T2 begins by defining three variables: half the num-
ber of RVs on a missile; an INTEGER*2 representation of the number of
DGZs in a sortie (equals the number of RVs on a missile); and an
INTEGER*4 version of the same value (for subroutine CHKSRT). ASR2T2
also sets a pointer to the ordered list of DGZ indices to 1, and a pointer
to the ordered list of missile indices to 1. Because ASR2T2 is long and
complicated, the remainder of the description is keyed to statement
numbers in the source code.

(10) ASR2T2 begins a loop over all the missiles to be used by getting a
missile index from the ordered list, and displaying a message on the
screen indicating the current sortie.

(15) ASR2T2 calls subroutine CTRVS to count the DGZs that aren’'t out-
casts and which still need at least one more RV. If more than half a
missile load is required, ASR2T2 goes to statement 17. If not, ASR2T2
examines the DGZ pointer. If it's 1, meaning the current DGZ is the
rightmost DGZ, ASR2T2 goes to statement 80, to mop up. Otherwise,
ASR2T2 resets the DGZ pointer to 1 and goes back to statement 15.

(17) ASR2T2 calls subroutine GETSRT to get an uprange sortie. The
height of burst (HOB) for the first DGZ in the sortie is defined to be the
HOB for all DGZs in the sortie. The launch time for the missile per-
forming the sortie is computed by adding time between launches to the
previous launch time. If the number of unique DGZs in the sortie is less
than the number of DGZs in the sortie, the sortie is a multi-layer sortie;
i.e. at least one DGZ in the sortie gets more than one RV. ASR2T2 goes
to statement 30 to check the multi-layer sortie.

ASR2T2

Otherwise, ASR2T2 calls CHKSRT to see if the missile can do the up-
range (single-layer) sortie. If so, ASR2T2 goes to statement 60 to save
the successful sortie data. If not, ASR2T2 displays a message indicating
the uprange sortie failed and calls SPLSRT to form a "split sortie"”.

ASR2T2 <alls CHKSRT again to see if the missile can do the split sortie.
If so, ASR2T2 goes to statement 60 to save the successful sortie data. If
not, ASR2T2 displays a message indicating the split sortie failed and calls
CROSRT to form a crossrange sortie.

ASR2T2 calls CHKSRT again to see if the missile can do the crossrange
sortie. If so, ASR2T2 goes to statement 60 to save the successful sortie
data. If not, ASR2T2 displays a message indicating the crossrange sortie
failed and calls DWNSRT to form a downrange sortie.

ASR2T2 calls CHKSRT again to see if the missile can do the down-
range sortie. If so, ASR2T2 goes to statement 60 to save the successful
sortie data. If not, ASR2T2 displays a message indicating the down-
range sortie failed and calls UPRSRT to form an uprange sortie again.

(25) ASR2T2 calls MULSRT to form a multi-layer sortie; i.e., one of the
DGZs in the current sortie is eliminated and its RVs reassigned to the
other DGZs in the sortie. Therefore, at least one of the remaining DGZs
gets more than one RV. The DGZ eliminated is the one furthest from the
sortie's uprange/downrange axis.

(30) ASR2T2 calls CHKMLT to see if the missile can do the current
multi-layer sortie. If so, ASR2T2 goes to statement 40 to see if the sortie
is wasteful. If the missile can't do the sortie, ASR2T2 calls CTUNIQ to
count the number of unique DGZs in the sortie. If there are more than
two, ASR2T2 goes back to statement 25 to form a new multi- layer sortie
by eliminating yet another DGZ. If there are only two DGZs in the sortie,
ASR2T2 goes to statement 50 to make one of them an outcast.

(40) ASR2T2 calls CHKWST to see if the sortie just formed is wasteful,;
i.e., if more than half the RVs deployed are more than their respective

ASR2T2

DGZs should get. If the sortie isn't wasteful, ASR2T2 goes to statement
60 to save the sortie data.

(50) ASR2T2 calls CSTOUT to cast out one of the DGZs in the current
sortie. The DGZ furthest from the target island's centroid becomes the
outcast. Then ASR2T2 calls UNDO to undo the sortie; i.e. to decrement
the number of RVs assigned so far to the DGZs in the sortie and to reset
the previous launch time to its former value. ASR2T2 goes back to
statement 15 to recount the number of DGZs that need RVs.

(60) ASR2T2 calls STRSRT to store the sortie lists in arrays, and displays
& message that a sortie has been formed. ASR2T2 increments the poin-
ter to the list of missile indices. If all missiles have been used, ASR2T2
goes to statement 90 to return. Otherwise, ASR2T2 calls MOVLFT to
move the DGZ pointer. It's moved to the DGZ immediately to the left of
the leftmost DGZ in the current scrtie. Then ASR2T2 goes to statement
10 to get the index of the next missile to use.

(80) ASR2T2 calls MOPUP to use any leftove- missile(s), and displays a
message indicating that fact.

(90) ASR2T2 returns control to ASR2TI.
Source File:

ALMOVR2A.FOR

ASR2TI

SUBROUTINE ASR2TI

Purpose: To assign RVs to DGZs and schedule launches.

Input Argquments:

None

Output Arguments:

None

Modules Called:

ADJST1 FXLYRS SYNTIM
ASR2T2 ORDDGS
FNVRTS ORDMSS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
OPSHNS CBOPSHNS.FOR
Tl CBTI.FOR

File Input/Qutput:

None

ASR2TI

FORTRAN 77 Exceptions:

Hin

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine ASR2TI begins by zeroing the number of RVs assigned so
far to each DGZ in the target island. It also sets a flag associated with
each DGZ to .FALSE., indicating no DGZ is an outcast (yet).

ASR2T! calls FNVRTS to find which DGZs are the vertices of a convex

polygon enclosing the target island. it displays a message stating it has
done so.

ASR2TI sets the downtime for each RV on each missile to an absurd
value (-1.0).

ASR2TI calls ORDDGS to form an ordered list of DGZ indices. DGZs are
ordered from right to left; i.e., so their Y-coordinates are in descending
order. ASR2TI calls ORDMSS to form an ordered list of missile indices.
Missiles are used in horizontal strips, from the front of the launch com-
plex to the back. Within each strip, missiles are used from right to left.

ASR2TI calls ASR2T2 to form a sortie for each missile that should be
used. If RV downtimes for the first layer should be “synchronized”
ASR2TI calls SYNTIM to do just that. Note that downtimes can be truly
synchronized only if the time between launches is zero; if it's non-zero,
the best that can be done is to minimize the span of downtimes.

ASR2TI calls ADJST1 to adjust launch times and downtimes for sub-
sequent layers. It calls FXLYRS to fix layer numbers within each string of
RVs going to the same DGZ. It's possible for the downtime of an RV in a
given layer to be earlier than the downtime of an RV in the previous
layer! FXLYRS ensures that the layer numbers and downtimes for each

ASR2TI

string of RVs are both ascending sequences. Then ASR2TI returns control
to ALM.

Source File:

ALMOVR2A.FOR

CHKMLT

SUBROUTINE CHKMLT (JM, NDPLYD, BTNEW, PNEW, TOFEW)

Purpose: To check variations of a multi-layer waik.

Input Arguments:

Variable Type Description

M INTEGER*2 Missile number (within launch complex).
Output Arguments:

Variable Type Description

NDPLYD INTEGER*2 Number of RVs deployed. if NDPLYD equals
number of RVs on missile, missile can do
multilayer sortie.

BTNEW REAL*4 New burn-time (seconds) to use for next
sortie. Defined only if sortie was successful.

PNEW REAL*4 New pitch (degrees).

TOFNEW REAL*4 New time-of-flight (seconds).

Modules Called:

CHKSRT FMABBA
CHKTMS SRTSRT
FMABAB

Calling Modules:

ASR2T2
MOPUPA

ﬁ

CHKMLT

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR Ti CBTI.FOR
OPSHNS CBOPSHNS.FOR WEAPON CBWEAPON.FOR
SORTEE CBSORTIE.FOR

File Input/Qutput:

None

FORTRAN 77 Exceptions:

1. Uses “*"” typing for variables.
2. Uses $SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CHKMLT begins by calling subroutine SRTSRT to form an
uprange walk. Then CHKMLT prepares the input arguments needed to
call subroutine CHKSRT and calls it. If the sortie fails, CHKMLT returns
control to the calling module.

If the sortie is successful, however, CHKMLT calls CHKTMS to check
the downtimes for each string of RVs that goes to the same DGZ. If the
absolute value of the difference between each successive pair of
downtimes is greater than or equal to the time between layers, the
times are good, and control returns to the calling module.

If the times are bad, CHKMLT calls FMABAB to form a sortie that
moves uprange, backs up to the beginning, and moves uprange again.
Then CHKMLT calls CHKSRT to see if the missile can do the sortie. If so,
control returns to the calling module.

CHKMLT

If not, CHKMLT calls FMABBA to form a sortie that moves uprange,
then turns around and moves downrange. CHKMLT calls CHKSRT again

to see if the missile can do this sortie. If so, control returns to the calling
module.

If not, CHKMLT forms the uprange sortie it formed at the beginning,
sets the number of RVs deployed equal to the number of RVs on a
missile, and returns.

source File:

ALMOVR2A.FOR

CHKSRT

SUBROUTINE CHKSRT (LEARTH, RXFUEL, LSPACE, SLAT, SLON, ELEVL,

Purpose:

NPTS, APLAT, APLON, ELEVT, HOB1, IWALK,
GAMMAT1, TLNCH, BTIN, PIN, TOFIN, IWPN,
WDATA, IWDATA, NDOWN, TDOWN, BTNEW,
PNEW, TOFNEW)

To assess a missile sortie’s feasibility by simulating a missile’s
flight and determining if the sortie is within the missile’s
performance capability. This subroutine determines: (1)
whether the missile can reach the first DGZ in the sortie, at
the desired reentry angle, given the maximum booster burn
time and the maximum allowable PBV propellant for range
extension; and (2) whether the PBV can target all of its RVs,
to their assigned DGZs, within the available PBV propellant
load.

Input Arguments:

Variable Type Description

LEARTH LOGICAL*1 Flag: if. TRUE., rotating earth should
be used.

RXFUEL REAL*4 Maximum fraction of fuel to use for
range extension.

LSPACE LOGICAL*1 Flag: if .TRUE., RVS should be spaced
at least a certain minimum distance
apart at an altitude specific to each
type of missile.

SLAT REAL*4 Latitude from which missile is
launched, in degrees (+ North/-South).

SLON REAL*4 Longitude from which missile is
launched, in degrees (+ East/-West).

ELEVL REAL*4 Altitude from which missile is
launched, in feet.

NPTS INTEGER*4 Number of DGZs in sortie.

CHKSRT

APLAT REAL*4 Array: latitude of each DGZ in the
sortie, in degrees (+ North/-South).

APLON REAL*4 Array: longitude of each DGZ in the
sortie, in degrees (+ East/-West).

ELEVT REAL*4 Target island’s elevation (altitude) in
feet above mean sea level.

HOB1 REAL*4 Height of burst for every DGZ in the

sortie, in feet. First DGZ's height of
burst is used for all DGZs.

IWALK INTEGER*4 Sortie type: 0 = One PBV; 1 = Two or
more PBVs.

GAMMA1 REAL*4 Reentry angle for first RV, in degrees.

TLNCH REAL*4 Launch time in seconds.

BTIN REAL*4 Burntime in seconds.

PIN REAL*4 Booster pitch in degrees.

TOFIN REAL*4 Time-of-flight in seconds.

IWPN INTEGER*4 Weapon type indicator.

WDATA REAL*4 Array: contains real weapon data.

IWDATA INTEGER*4 Array: contains integer weapon data.

Output Arquments:
Variable Type Description

NDOWN INTEGER*2 Number of RVs deployed. If NDOWN
equals number of RVs on missile,
missile can do sortie.

TDOWN REAL*4 Array: downtime for each RV in the
sortie, in seconds.

BTNEW REAL*4 New burn time (seconds) to use for
next sortie. Defined only if sortie was
successful.

PNEW REAL*4 New pitch (degrees).

TOFNEW REAL*4 New time-of-flight (seconds).

CHKSRT

Modules Called:

All modules called by CHKSRT are in the TARGET CSC's library
(TARGET.LIB).

Calling Modules:

ASR2T2 MOPUPC
CHKMLT TRYFLY
MOPUPB

Common Blocks Used:

None

File Input/Output:

None

FORTRAN 77 Exceptions:

"

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

CHKSRT is used to interface between the modules of the TARGET CSC
that are used by the ALM CSC and the -alling module in the ALM. A
subset of the TARGET subroutines is usea by the ALM to CHecK SoRTie
feasibility when generating attack laydowns. Since sortie feasibility
assessment is an option of TARGET when it is executed autonomously,
that software can be used by ALM for the same purpose.

The first time that CHKSRT is called during an ALM run, it begins by
reassigning the missile data set (MDS) information for the booster, PBV
and RV, contained in the arrays WDATA and IWDATA, to working

CHKSRT

variables compatible with TARGET. Note that in order to keep the
interface between ALM and TARGET as simple as possible, all MDS
information is read by subroutines RBOOST, RPBVFI and RRVFIL, with the
real variables being stored in WDATA and the integer variables in
IWDATA. This reassignment is performed only for the first call to
CHKSRT since the MDS information will remain the same (single weapon
type used).

Processing continues with the targeting of the booster to the first
DGZ in the sortie at either a prescribed reentry angle (passed in via
GAMMAT1) or at minimum energy (GAMMA1 equals zero). If the first
DGZ is accessible by the booster or if it is accessible via range extension,
then RVs are deployed to the remaining DGZs in the sortie. if the sortie
is feasible (i.e., all RVs can be deployed successfully to their prescribed
DGZs), CHKSRT saves the downtimes and sets the number of RVs
successfully deployed (NDOWN) equal to the number of RVs on board
the missile before exiting. However, if the sortie is infeasible, then one
of the following three steps is taken: a) If range extension is required to
reach the first DGZ and the sortie still cannot be completed, then
NDOWN is set to -1; b) if the first DGZ is out of range even with range
extension, then NDOWN is set to -2; and ¢) if the first DGZ is less than the
minimum range capability of the booster, then NDOWN is set to -3.

Source File:
CHKSRT.FOR

(Please note that CHKSRT.FOR resides in the TARGET directory, and
that CHKSRT.OBJ is stored in the library \TARGET\TARGET.LIB)

CHKTMS

SUBROUTINE CHKTMS (GOOD)

Purpose: To check downtimes for RVs in the current sortie that go to
the same DGZ. If the absolute value of the difference
between successive downtimes at each DGZ is greater than or

equal to the time between layers, downtimes are considered
"good”.

Input Arguments:

None
Output Arguments:
Variable Type Description
GOOD LOGICAL*1 Flag: if .TRUE., downtimes are good.

Modules Called:

GTBLYR

Calling Modules:

CHKMLT

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTRO.FOR SORTEE CBSORTIE.FOR
OPSHNS CBOPSHNS.FOR TI CBTI.FOR

CHKTMS

File Input/Qutput:

None

FORTRAN 77 Exceptions:

"%

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CHKTMS first sets the logical flag GOOD to .TRUE.; i.e.,
CHKTMS assumes the times will be good and will try to prove otherwise.
Then it begins an outer loop that examines each RV except the last.
CHKSRT next begins an inner loop that examines each successor to the
RV currently selected in the outer loop. If the RVs go to different DGZs,
no further checking is done; CHKSRT proceeds to the next successor, if
there is one.

If the RVs do go to the same DGZ, CHKSRT gets the layer numbers
associated with the RVs from a list. If the second RV's layer number is
less than the first RV’s, the two layer numbers are swapped. This step is
necessary when last-off-first-in missile systems are used.

If Fratricide Constraints Files (“models”) aren’t being used, then the
operator has supplied a list of times between layers on the Control File's
last record. The required time between layers is computed by summing
up values in that list, from the first RV's layer up to, but not including the
second RV's layer. If Fratricide Constraints Files ARE being used, the
required time between layers is computed: the difference between the
first and second RV’s layers is multiplied by the sure-safe time
corresponding to the first RV's height of burst.

CHKTMS computes the absolute value of the difference between the
two RVs' downtimes. If that value is less than the required time
between layers, the flag GOOD is set to .FALSE. and control returns to

CHKTMS

CHKMLT. Otherwise, CHKTMS proceeds to the next RV in the inner or
outer loop. If all times are good, control returns to CHKMLT with GOOD

still set to .TRUE.

Source File:

ALMOVR2A.FOR

“

’ CHKWST

SUBROUTINE CHKWST (WSTFUL)
Purpose: To see if the current sortie is “wasteful”. A sortie is wasteful
if more than half the RVs are excess RVs. An excess RV is one

assigned to a DGZ that's already received its quota of RVs.

input Arguments:

None
Output Arguments:
Variable Type Description

WSTFUL LOGICAL*1 Flag: if.TRUE., the sortie is wasteful.

Modules Called:

None

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR
T CBTI.FOR

File Input/Output:

None

CHKWST

FORTRAN 77 Exceptions:

"t

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CHKWST first zeros a counter of excess RVs. Then it
examines the layer number of each RV in the sortie. If a layer number is
greater than the number of RVs the associated DGZ was supposed to
get, the counter of excess RVYs is incremented. Then if the counter is -
greater than half the number of RVs on the missile, the flag WSTFUL is
set to .TRUE.: if not, it's set to FALSE. Then CHKWST returns control to
ASR2T2.

Source File:

ALMOVR2A.FOR

CROSRT

SUBROUTINE CROSRT

Purpose: To form acrossrange sortie.

Input Arguments:

None

Output Arguments:

None

Modules Called:

FMAX
SWPSRT

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses “*” typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

r_—-—

CROSRT

Description:

Subroutine CROSRT simply sorts the lists of sortie data so the Y-
coordinates are in descending (right-to-left) order. See Figure 5-13 and
the example below. The result is a missile sortie that targets DGZs in the
crossrange direction from right to left.

Source File:

ALMOVR2B.FOR

Example:

ATTACK DIRECTION

CROSSRANGE SORTIE

CSTOUT

SUBROUTINE CSTOUT (NDGSRT, DGZSRT)

Purpose: To mark one of the DGZs in the current sortie as an outcast;
i.e., to indicate the DGZ should be ignored from now on as
permanently unreachable.

Input Arguments:

Variable Type
NDGSRT INTEGER*2

DGZSRT INTEGER*2

Output Arguments:

None

Modules Called:

FNORM
SQUEE2

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

Description

Number of DGZs (and RVs) in current
sortie.

Array containing indices for each DGZ in
the sortie.

OUTPUT CBOUTPUT.FOR

Tl CBTLFOR

CSTOUT

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses “*" typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CSTOUT looks for the DGZ in the current sortie that's
furthest from the target island’s centroid. Since the centroid is the
origin of the tangent-plane coordinate system, computing distances is
easy. CSTOUT also looks for DGZs in the current sortie that are vertices
of the convex polygon enclosing the target island, and looks for the
furthest one of them too. If CSTOUT finds one or more DGZs that are
vertices, the furthest one of them is cast out. If none of the DGZs in the
sortie is a vertex, then the ordinary DGZ that's furthest from the centroid

is cast out.

Source File:

ALMOVR2B.FOR

CTRVS

SUBROUTINE CTRVS (IDSTRT, NEEDED)

Purpose: To count the total number of RVs that still must be assigned
to a subset of the target island. The subset consists of all
DGZs to the lef of, and including, the starting DGZ.

Input Arguments:

Variable Type

IDSTRT INTEGER*2

Output Arguments:

Variable Type
NEEDED INTEGER*2

Modules Called:

None

Calling Modules:

ASR2T2
GETSRT

Common Blocks Used:

Block $INCLUDE

Tl CBTIL.FOR

Description

Pointer to list of sorted DGZ indices.
indicates where to start.

Description

Number of RVs needed.

CTRVS

File Input/Output:

None

FORTRAN 77 Exceptions:

"ot

1. Uses typing for variables.
2. Uses $SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CTRVS zeros the counter of RVs needed and executes a
loop that examines DGZs. Outcasts are ignored. For each DGZ, CTRVS
subtracts the number of RVs assigned so far from the number of RVs
allocated to the DGZ in the input RV Allocation File. If the difference is
greater than zero, it's added to the counter of RVs needed. Then CTRVS
returns control to ASR2T2 or GETSRT.

Source File:

ALMOVR2B.FOR

CTUNIQ

SUBROUTINE CTUNIQ (NDGZS, DGZSRT, NUNEEK)

Purpose: To countthe number of unique DGZs in a sortie.

Input Arguments:

Variable Type

NDGZS INTEGER*2
DGZSRT INTEGER*2
Output Arguments:

Variable Type
NUNEEK INTEGER*2

Modules Called:

None

Calling Modules:

ASR2T2
GETSRT
MULSRT

Common Blocks Used:

None

File Input/Output:

None

Description
The number of DGZs in the sortie.

Array: contains the index of each DGZ in
the sortie.

Description

Number of unique DGZs.

CTUNIQ

FORTRAN 77 Exceptions:

1. Uses “*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CTUNIQ initially defines the number of unique DGZs in
the sortie to be one. Then CTUNIQ executes a loop that ranges from the
second through the last DGZ in the sortie. During each pass, CTUNIQ
sees if the current DGZ appears earlier in the sortie. If so, the DGZ isn't
unique and CTUNIQ proceeds to the next DGZ. But if the DGZ is unique,
the number of unique DGZs in incremented. Then CTUNIQ returns
control to the calling module.

Source File:

ALMOVR2B.FOR

CTUNUS

SUBROUTINE CTUNUS (NUNUSD)

Purpose: To count the number of unused missiles in the launch

complex.

input Arguments:

None

Output Arguments:

Variable Type
NUNUSD INTEGER*2

Modules Called:

None

Calling Modules:

MOPUP

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR

File Input/Output:

None

Description

Number of unused missiles.

CTUNUS

FORTRAN 77 Exceptions:

HnHan

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine CTUNUS initially defines the number of unused missiles to
be zeru. Then CTUNUS executes a loop that ranges from one through
the number of missiles it's supposed to use. During each pass, CTUNUS
examines a flag associated with each missile that indicates whether or
not the missile has been used yet. If the flag is. FALSE., meaning the
missile hasn’'t been used yet, the number of unused missiles is
incremented. Then CTUNUS returns control to the calling module.

Source File:

ALMOVR2B.FOR

DWNSRT

SUBROUTINE DWNSRT (FIRST, LAST)

Purpose: To form a downrange sortie from a subset of the current

sortie.

Input Arguments:

Variable Type

FIRST INTEGER*2

LAST INTEGER*2
Output Arguments:

None

Modules Called:

FMIN
SWPSRT

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

File Input/Output:

None

Description

Index for first DGZ in sortie lists.
Index for last DGZ in sortie lists.

DWNSRT

FORTRAN 77 Exceptions:

win

1. Uses typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine DWNSRT simply sorts the specified sublists of sortie data
so the X-coordinates are in ascending (downrange) order. See
Figure 5-13 and the figure below. The result is a missile sortie that
targets DGZs in the downrange direction.

Source File:

ALMOVR2B.FOR

Example:

ATTACK DIRECTION

DOWNRANGE SORTIE

FMABAB

SUBROUTINE FMABAB

Purpose: To form a sortie that moves uprange, returns to the
beginning, and moves uprange again.

Input Arquments:

None

Output Arguments:

None

Modules Called:

ADDGZ2
SQUEEZ

Calling Modules:

CHKMLT

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses “*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

FMABAB

Description:

Subroutine FMABAB calls subroutine SQUEEZ to form a list of unique
DGZ numbers, a list of the number of times each DGZ appears in the
sortie, and a list of the starting layer number for each DGZ. Then
FMABAB prepares the index used to form a new sortie: the index is set
to one.

FMABAB begins a loop that ranges over the list of unique DGZs.
During each pass, FMABAB sees if the number of times the DGZ appears
in the sortie is greater than zero. If so, the DGZ is added to the sortie by
calling subroutine ADDGZ2 and the sortie index is incremented. The
number of times the DGZ appears in the input sortie is decremented. If
the sortie is completed during a pass through the loop, control is
returned to CHKMLT. Otherwise, FMABAB proceeds to the next unique
DGZ in the list. If all unique DGZs have been examined and the sortie is
still incomplete, FMABAB goes back to the beginning of the loop and
starts over.

Source File:

ALMOVR2B.FOR

FMABAB

Example:

3DGZs
6 RVs/MISSILE
2 RVs/DGZ
1 MISSILE

ATTACK DIRECTION

/03

RV NUMBER =

AN EHEWN =

FMABBA

SUBROUTINE FMABBA

Purpose: To form asortie that moves uprange, turns around, and then
moves downrange.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADDGZ2
SQUEEZ

Calling Modules:

CHKMLT

Common Blocks Used:

Block $INCLUDE
SORTIE CBSORTIE.FOR

File Input/Qutput:

None
FORTRAN 77 Exceptions:
1. Uses "*” typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

FMABBA

Description:

Subroutine FMABBA calls subroutine SQUEEZ to form a list of unique
DGZ numbers, a list of the number of times each DGZ appears in the
sortie, and a list of the starting layer number for each DGZ. Then
FMABBA prepares the index used to form a new sortie: the index is set
to one.

FMABBA prepares to move uprange by setting the flag UPRNGE to
.TRUE., the starting DGZ index to 1, the ending DGZ index to the number
of unique DGZs, and the loop increment to + 1.

FMABBA begins a loop that ranges (forward or backward) over the
list of unique DGZs. During each pass, FMABBA sees if the number of
times the DGZ appears in the sortie is greater than zero. If so, the DGZ is
added to the sortie by calling subroutine ADDGZ2, and the sortie index
is incremented. The number of times the DGZ appears in the input sortie
is decremented. If the sortie is completed during a pass through the
loop, control is returned to CHKMLT. Otherwise, FMABBA proceeds to
the next unique DGZ in the list. If all unique DGZs have been examined
and the sortie is still incomplete, FMABBA reverses the direction in which
it scans the list of unique DGZs, goes back to the beginning of the loop,
and starts over.

Source File:

ALMOVR2B.FOR

FMABBA

Example:
ATTACK DIRECTION
RV NUMBER = 1
3 DG2Zs 2
6 RVs/MISSILE 3
2 RVs/DGZ 4
1 MISSILE g

FNFRTH

SUBROUTINE FNFRTH (YMEAN, ISFUR)

Purpose: To find the DGZ in the current sortie that's furthest from the
sortie’s vertical midline.

Input Arguments:

Variable Type

YMEAN REAL*4

Output Arguments:

Variable Type
ISFUR INTEGER*2

Modules Called:

None

Calling Modules:

MULSRT

Common Blocks Used:

Block $INCLUDE

Description

Mean of the sortie’s leftmost and rightmost
DGZs.

Description

Index of furthest point.

SORTEE CBSORTIE.FOR

File Input/Qutput:

None

FNFRTH

FORTRAN 77 Exceptions:

"k 1

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine FNFRTH sets the furthest distance found so far to an
absurdly small value. Then FNFRTH executes a loop that computes the
absolute value of the difference between each DGZ's Y-coordinate and
the mean Y-coordinate. If the value is greater than the current
maximum, the maximum is updated, and the DGZ's index is stored in
ISFUR. After all DGZs have been checked, control returns to MULSRT.

Source File:

ALMOVR2B.FOR

FNHIGH

SUBROUTINE FNHIGH (HIGEST)

Purpose: To find the highest layer number among all RVs attacking the
targetisland.

Input Arguments:

None

Output Arguments:

Variable Type Description
HIGEST INTEGER*2 Highest layer number.

Modules Called:

None

Calling Modules:

ADJST1

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
WEAPON CBWEAPON.FOR

File Input/Output:

None

FNHIGH

FORTRAN 77 Exceptions:

"t

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommandes.

Description:

Subroutine FNHIGH sets the highest layer found so far to an absurdly
small value. Then FNHIGH executes an outer loop that examines each
missile used and an inner loop that examines the layer number for each
RV on the missile. If the layer number is higher than the highest layer
number found so far, the highest layer number is updated. After all RVs
have been checked, control returns to ADJST1.

Source File:

ALMOVRZ2B.FOR

e

FNPREV

SUBROUTINE FNPREV (IDGZ, IPL, IR, JM)

Purpose: To find the RV in the previous layer that hit a specified DGZ,
and return its missile number and order in the missile.

Input Arguments:

Variable Type

IDGZ INTEGER*2
IPL INTEGER*2
Qutput Arguments:

Variable Type

JR INTEGER*2
M INTEGER*2

Modules Called:

ABRTRN
SQUEE2
WRSFMS

Calling Modules:

ADIJST?

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR

OUTPUT CBOUTPUT.FOR

Description

DGZ's index.

Previous layer number.

Description

RV index; i.e., order within missile.

Missile index.

WEAPON CBWEAPON.FOR

FNPREV

File Input/OQutput:

None
FORTRAN 77 Exceptions:
1. Uses “*“ typing for variables.

2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine FNPREV executes an outer loop that examines each missile
used and an inner loop that examines each RV on the missile. If the DGZ
attacked by the RV is the one specified by IDGZ, and if the RV's layer
number equals IPL, then control returns to ADJST1. Otherwise the
search continues. If the RV can’t be found, this is considered a fatal
error. FNPREV writes a warning message in the status file, and two
information messages indicating the DGZ and previous layer- number.
Then it calls ABRTRN.

Source File:

ALMOVR2B.FOR

FNVRTS

SUBROUTINE FNVRTS

Purpose: To determine which DGZs are the vertices of a convex
polygon enclosing the target island.

Input Arguments:

None

Output Arguments:

None

Modules Called:

FCVPOL
PRPNTS

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE
Tl CBTIL.FOR

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses “**" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

FNVRTS

Description:

Subroutine FNVRTS executes a loop that sets a logical flag associated
with each DGZ to .FALSE.; these flags indicate none of the DGZs is a
vertex. FNVRTS checks the number of DGZs in the target island. If
there's only one, its flag is set to .TRUE,, indicating it's the (only) vertex,
and control returns to ASR2TI. Otherwise, FNVRTS calls PRPNTS to
project the DGZs onto a plane tangent to the earth at the target island’s
centroid. Then FNVRTS calls FCVPOL to form a list of DGZ indices. Each
DGZ in this list is a vertex of the convex polygon enclosing the set of
DGZs. Finally, FNVRTS executes a loop that examines each DGZ index in
the list and sets the corresponding DGZ's flag to .TRUE., indicating the
DGZ is a vertex.

Source Fi.a:

ALMOVR2B.FOR

FXLYRS

SUBROUTINE FXLYRS

Purpose: To fix the layer numbers for each string of RVs attacking the
same DGZ. Layer numbers were assigned to RVs with no
regard whatsoever for flight times, so it’s possible for one RV
assigned to a DGZ to have an EARLIER downtime than an RV
in a previous layer. FXLYRS ensures that in each string of RVs,
the downtime for layer N is later than the downtime for layer
N-1.(N=2,3,4,.).

Input Arguments:

None

Output Arguments:

None

Modules Called:

ORDER

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR
TI CBTIL.FOR

WEAPON CBWEAPON.FOR

FXLYRS

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*” typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine FXLYRS executes a loop that examines each DGZ in turn.
If the number of RVs assigned so far (i.e., number of layers) is greater
than 1, FXLYRS prepares three lists. It does so by executing a pair of
nested loops: the outer loop examines each missile used and the inner
examines each RV on the missile. For each RV attacking the current DGZ,
FXLYRS saves the RV index (order within missile), missile index, and
downtime in the lists. When done, the number of entries in each list
equals the number of layers attacking the DGZ.

Then FXLYRS calls ORDER to form a list of pointers so RV data can be
accessed in ascending order of downtime. FXLYRS executes a loop over
layer numbers that puts the RV indices, missile indices, and downtimes
back in their original arrays, but this time the layer numbers and
downtimes are in ascending order.

Source File:

ALMOVR2C.FOR

GETSRT

SUBROUTINE GETSRT (ID, NRVS)

Purpose: To get DGZs for a strict uprange sortie or simple multi-layer

sortie.

Input Arguments:

Variable Type Description

ID INTEGER*2 Pointer to ordered list of DGZ indices.

NRVS INTEGER*2 Number of RVs on missile that will perform
sortie.

Output Arguments:

Variable Type Description

1D INTEGER*2 Pointer to ordered list of DGZ indices. Input
argument may be changed.

Modules Called:

ABRTRN ADXTRA SQUEE2
ADDGZ1 CTRVS SRTSRT
ADLAYR CTUNIQ WRSFMS

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE Block

LC CBLC.FOR SORTEE
OUTPUT CBOUTPUT.FOR TI

$INCLUDE

CBSORTIE.FOR
CBTI.FOR

GETSRT

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*"” typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Numbers in parentheses are statement numbers in the source code.

(10) Subroutine GETSRT calls CTRVS to count the number of RVs still
needed by DGZs that aren’t outcasts. Counting starts with the DGZ
pointed to by ID and sweeps left. If the number of RVs needed is greater
than half the number of RVs on a missile, GETSRT goes to statement 30
to prepare a sortie index. If not, GETSRT checks to see if counting RVs
started with the rightmost DGZ (ID = 1). If so, GETSRT goes to statement
30 to prepare a sortie index. If not, GETSRT resets ID to 1, and goes back
to statement 10, to count RVs across the entire target island.

(30) GETSRT prepares an index used to store sortie data in several
lists.

(35) GETSRT examines the current DGZ. if it's an outcast or it has
already gotten its full quota of RVs, GETSRT goes to statement 50 to
increment the DGZ pointer. If not, GETSRT calls ADDGZ1 to add the DGZ
to the sortie, and increments the sortie index.

(50) GETSRT increments the DGZ index (i.e., moves left). If the sortie
is complete, GETSRT goes to statement 60 to check the number of
entries in the sortie lists. If not, GETSRT checks the DGZ pointer to see if
it's past the target island’s left edge. |f not, GETSRT goes back to
statement 35 to examine the new DGZ. Otherwise, GETSRT resets the
DGZ pointer to the rightmost DGZ and calls ADLAYR to add RVs from

GETSRT

subsequent layers, to use up the missile load. If that's not possible,
GETSRT call ADXTRA to add extra RVs to the most valuable DGZs in the
sortie. Then GETSRT goes to statement 65 to sort the lists of sortie data.

(60) If the number of DGZs in the sortie doesn’t equal the number of
RVs on the missile, something is terribly wrong. GETSRT calls WRSFMS
and SQUEE?2 repeatedly to write a warning message in the Status File,
and calls ABRTRN to abort the run.

(65) GETSRT calls SRTSRT to sort the lists of sortie data, so DGZs are in
uprange order. GETSRT calls CTUNIQ to count the number of unique
DGZs in the sortie and returns control to ASR2T2.

Source File:

ALMOVR2C.FOR

GTBLY2

SUBROUTINE GTBLY2 (IM, TBLYRS)

Purpose: To get the time between layers from a list of sure-safe times
read from the Fratricide Constraints Files.

Input Arguments:

Variable Type
IM INTEGER*2
Qutput Arguments:

Variable Type

TBLYRS INTEGER*2

Modules Called:

None

Calling Modules:

ADJST1

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
OPSHNS CBOPSHNS.FOR
OUTPUT CBOUTPUT.FOR

Description

Missile index.

Description

Time between current and next layer,
in seconds.

Block $INCLUDE

Tl CBTILLFOR
WEAPON CBWEAPON.FOR

GTBLY2

File Input/Output:

None

FORTRAN 77 Exceptions:

" n

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

GTBLY2 executes a simple loop that examines each DGZ in the sortie
performed by the specified missile. GTBLY2 uses the height of burst
index associated with each DGZ to get the largest sure-safe time. This
maximum is returned as the time between layers.

Source File:

ALMOVR2C.FOR

GTBLYR

SUBROUTINE GTBLYR (LAYER, TBLYRS)

Purpose: To get the time between the current layer and the next from
a list supplied in the Control File.

Input Arguments:

Variable Type Description

LAYER INTEGER*2 Current layer number.

Output Arguments:

Variable Type Description
TBLYRS INTEGER*2 Time between current and next layer,
in seconds.

Modules Called:

ABRTRN
SQUEE2
WRSFMS

Calling Modules:

ADJST1
CHKTMS

Common Blocks Used:

Block $INCLUDE

CNTROL CBCNTROL.FOR
OPSHNS CBOPSHNS.FOR
OUTPUT CBOUTPUT.FOR

GTBLYR

File Input/Output:

None
FORTRAN 77 Exceptions:
1. Uses "*" typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

If the layer number is bad, GTBLYR calls WRSFMS and SQUEE2 to write
a warning message in the Status File. Then GTBLYR calls ABRTRN to
abort the run. Otherwise, GTBLYR uses the current layer number as an
index to get the desired time between layers from the list, and then
returns control to ADJST1 or CHKTMS.

Source File:

ALMOVR2C.FOR

MOPUP

SUBROUTINE MOPUP

Purpose: To assign RVs on any remaining missile(s) to DGZs in the
target island.

Input Arguments.

None

Output Arguments:

None

Modules Called:

ABRTRN MOPUPB
CTUNUS MOPUPC
MOPUPA WRSFMS

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR

File Input/Qutput:

None

MOPUP

FORTRAN 77 Exceptions:

Hgn

1. Uses typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOPUP calls CTUNUS to count the unused missiles in the launch
complex. If all missiles, have been used, MOPUP returns control to
ASR2T2. If not, MOPUP calls MOPUPA to try to assign RVs to DGZs that
didn’t get any RVs at all. -

MOPUP calls CTUNUS again to count the unused missiles in the launch
complex. If all missiles, have been used, MOPUP returns control to
ASR2T2.

If not, MOPUP checks to see if any missiles have been used at all, since
the next two MOPUP techniques require at least one previous sortie. If
no missiles have been used at all, MOPUP calls WRSFMS to write a

warning message in the Status File, and then calls ABRTRN to abort the
run.

Otherwise, MOPUP calls MOPUPB to try to assign RVs to sorties with
the greatest number of short-changed DGZs; i.e., DGZs that got fewer
RVs than they were supposed to get (as prescribed in the input RV
Allocation File). |

MOPUP calls CTUNUS again to count the unused missiles in the launch
complex. If all missiles, have been used, MOPUP returns control to
ASR2T2. Otherwise, MOPUP calls MOPUPC to assign RVs on unused
missiles to the most valuable sorties, and then returns control to ASR2T2.

Source File:

ALMOVR2C.FOR

MOPUPA

SUBROUTINE MOPUPA

Purpose: To assign RVs on an unused missile to DGZs in the target
island. MOPUPA picks DGZs that didn’t get any RVs at all.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADDGZ1 SRTSRT
CHKMLT STRSRT
SRTSR3 UNDO

Calling Modules:

MOPUP

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR
SORTEE CBSORTIE.FOR

File Input/Output:

None

Block $INCLUDED
T CBTLFOR
WEAPON CBWEAPON.FOR

MOPUPA

FORTRAN 77 Exceptions:

1. Uses “*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOPUPA tries to form a sortie from DGZs that didn’t get any RVs at
all (outcasts are ignored as usual). If there aren’t any such DGZs,
MOPUPA returns control to MOPUP.

MOPUPA sorts the data in the sortie lists so DGZ values are in
ascending order. Then it cycles through the DGZs (backwards), adding
them to the sortie, until all RVs on the unused missile have been used.
MOPUPA sorts the sortie lists to form an uprange sortie. The first
unused missile is picked and its launch time computed. MOPUPA calls
CHKMLT to see if the missile can perform the sortie. If so, MOPUPA calls
STRSRT to store the sortie data in arrays. If not, MOPUPA calls UNDO to
undo the sortie just found. Then MOPUPA returns control to MOPUP.

Source File:

ALMOVR2C.FOR

MOPUPB

SUBROUTINE MOPUPB

Purpose: To assign RVs on any remaining missile(s) to DGZs in the
target island. MOPUPB repeats the sortie with the greatest
number of short-changed DGZs; i.e., DGZs that got fewer RVs
than they were supposed to get (as prescribed in the input
RV Allocation Fiel).

Input Arguments:

None

Qutput Arguments:

None

Modules Called:

ADDGZ1 STRSRT
CHKSRT UNDO

Calling Modules:

MOPUP

Common Blocks Used:

Block $INCLUDE Block $INCLUDED

LC CBLC.FOR Ti CBTI.LFOR
OPSHNS CBOPSHNS.FOR WEAPON CBWEAPON.FOR

File Input/Output:

None

MOPUPB

FORTRAN 77 Exceptions:

Hgn

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOPUPB executes a loop over all missiles that were supposed to be
used, looking for one that hasn’t been used yet. If it finds one, it begins
another loop over all missiles used, looking for one whose sortie has the
greatest number of short-changed DGZs. If it can’t find one, MOPUPB
returns control to MOPUP. Otherwise, MOPUPB duplicates the sortie
and calls CHKSRT to see if the current unused missile can perform the
sortie. If so, MOPUPB calls STRSRT to store the sortie data in arrays: if
not MOPUPB calls UNDO to undo the sortie just formed. Then MOPUPB
makes another pass through the outer loop, looking for the next unused
missile.

Source File:

ALMOVR2C.FOR

MOPUPC

SUBROUTINE MOPUPC

Purpose:

To assign RVs on any remaining missile(s) to DGZs in the

target island. MOPUPC repeats the most valuable sortie; i.e.,
the sortie with the most valuable DGZs.

input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN STRSRT
ADDGZ1 UNDO
CHKSRT WRSFMS

Calling Modules:

MOPUP

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR
OPSHNS CBOPSHNS.FOR

File Input/Qutput:

None

Block

T
WEAPON

$INCLUDE

CBTI.FOR
CBWEAPON.FOR

MOPUPC

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOPUPC first sets a logical flag associated with each missile to
.FALSE., indicating the missile’s sortie hasn’t been repeated. MOPUPC
also defines the current pass through the sortie to be the first.

MOPUPC executes a loop over all missiles, looking for one that hasn't
been used yet. If it finds one, MOPUPC looks for the most valuable sortie
that hasn't already been repeated during the current pass. If MOPUPC
can’t find a sortie to repeat during the first pass, something is very
wrong: MOPUPC calls WRSFMS to write a warning message and calls
ABRTRN to abort the run. Otherwise, MOPUPC duplicates the sortie and
calls CHKSRT to see if the unused missile can perform the sortie. If so,
MOPUPC calls STRSRT to store the sortie data in arrays: if not, MOPUPC
calls UNDO to undo the sortie. After trying to duplicate successively less
valuable sorties for any unused missiles, MOPUPC returns control to
MOPUP.

Source File:

ALMOVR2C.FOR

MOVLFT

SUBROUTINE MOVLFT (ID)

Purpose: To move the DGZ pointer immediately to the left of the
leftmost DGZ in the current sortie.

Input Arguments:

None

Output Arguments:
Variable Typhe Description
D INTEGER*2 DGZ pointer.

Modules Called:

ABRTRN SQUEE2
FMIN WRSFMS

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE Block $INCLUDED
LC CBLC.FOR SORTEE CBSORTIE.FOR
OUTPUT CBOUTPUT.FOR TI CBTIL.LFOR

File Input/Output:

None

MOVLFT

FORTRAN 77 Exceptions:

1. Uses “*“ typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MOVLFT calls FMIN to find the DGZ in the current sortie with the
smallest (i.e., leftmost) Y-coordinate. Then MOVLFT searches the list of
DGZs, in descending order of their Y-coordinates, to find a match. If no
match is found, something is very wrong: MOVLFT calls WRSFMS to
write a warning message in the Status File, and calls ABRTRN to abort
the run. Otherwise, MOVLFT increments the DGZ pointer to move left
one more DGZ. If this wraps around the left edge of the target island,
the pointer is reset to the right edge. Then MOVLFT returns control to
ASR2T2.

Source File:

ALMOVR2C.FOR

MULSRT

SUBROUTINE MULSRT

Purpose: To form a multi-layer sortie from an uprange sortie by
reassigning one DGZ's RVs to other DGZs in the sortie.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADDGZ1 FNFRTH
CPCNTR SQUEEZ
CTUNIQ

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR
Tl CBTLFOR

File Input/Qutput:

None

MULSRT

FORTRAN 77 Exceptions:

1. Uses “*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

MULSRT calls CPCNTR to compute the sortie’s mean Y-coordinate,
which establishes the sortie’s vertical midline. Then MULSRT calls
FNFRTH to find the DGZ in the sortie that's furthest from the vertical
midline. B

MULSRT counts the number of times the furthest DGZ appears in the
sortie; that's the number of RVs that have to be reassigned. Then
MULSRT goes through the lists of sortie data, deleting all values
associated with the furthest DGZ. MULSRT decrements the number of
RVs assigned so far to the furthest DGZ.

MULSRT calls CTUNIQ to count the unique DGZs in the modified sortie
and sets a logical flag associated with each unique DGZ to .FALSE., to
indicate the DGZ hasn’t been reassigned an RV from the deleted DGZ.
Then MULSRT executes a loop that reassigns RVS to the DGZs remaining
in the sortie. At first, if there are DGZs that still need RVs, RVs are
reassigned to the LEAST valuable DGZs. Later, if all DGZs have received
their full quota, RVs are reassigned to the MOST valuable DGZs.

Source File:

ALMOVR2C.FOR

ORDDGS

SUBROUTINE ORDDGS

Purpose: To order DGZs; i.e., to form a list of pointers so DGZs can be
accessed from right to left.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ORDER
PRPNTS

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR
T CBTILFOR

File Input/Qutput:

None

ORDDGS

FORTRAN 77 Exceptions:

1. Uses “*“ typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

ORDDGS called PRPNTS to project the DGZs onto a plane tangent to
the earth at the target island’s centroid. ORDDGS calls ORDER to form
the list of pointers required: by ordering DGZs with their Y-coordinates

_in descending order, the DGZs can be accessed from right to left. See
Figure 5-13.

Source File:

ALMOVR2C.FOR

ORDMSS

SUBROUTINE ORDMSS

Purpose: To order missiles; i.e., to form a list of pointers that controls
the order in which they’re used. A horizontal strip of missiles
is used for each layer, and strips are used from front to back.
Within a strip, missiles are used from right to left. See
Figure 5-13.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN PRPNTS
ISWAP RMLEAD
ORDER SQUEE2
PLURAL WRSFMS

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

LC CBLC.FOR Tl CBTIL.FOR
OUTPUT CBOUTPUT.FOR WEAPON CBWEAPON.FOR

ORDMSS

File Input/Output:

None

FORTRAN 77 Exceptions:

1. Uses "*” typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Numbers in parentheses refer to statement numbers in the source
code.

ORDMSS calls PRPNTS to project the missile silos onto a plane tangent
to the earth at the launch complex’s centroid. See Figure 5-13. ORDMSS
tinkers with signs so Y-coordinates decrease from right to left just like
DGZ Y-coordinates. X-coordinates decrease from front to back.
ORDMSS calls ORDER to form a list of pointers, so silos can be accessed
from front to back. ORDMSS zeros the number of RVs assigned to each
DGZ so far and sets the index for the first missile in the first layer to one.

(20) ORDMSS counts the number of DGZs that need at least one
more RV. The result is the number of RVs needed for the current layer.
If it's less than the number of RVs on a missile, ORDMSS goes to
statement 80 to define the number of missiles and RVs to use in the
current layer.

Otherwise, ORDMSS divides the number of RVs in the current layer by
the number of RVs on a missile, yielding the number of full missile loads
(i.e., missiles) in the current layer. ORDMSS computes the index for the
last missile in the current layer. If that index is greater than the number
of missiles in the launch complex, something is wrong. ORDMSS calls
WRSFMS and SQUEE2 to write a warning message in the Status File, and
then calls ABRTRN to abort the run.

ORDMSS

Otherwise, ORDMSS sorts the pointers for the current layer so missiles
will be used from right to left. Then ORDMSS computes the number of
RVs in the current layer (number of missiles in current layer times
number of RVs per missile). ORDMSS executes a loop over all the DGZs in
the target island, sweeping from right to left, and assigning an RV to
each DGZ that still needs one. If all RVs in the current layer are used up
before examining all DGZs, ORDMSS goes to statement 60 immediately,
rather than continuing to statement 60 after examining all DGZs.

(60) ORDMSS computes the index for the first missile in the next
layer (immediately follows the last missile in the current layer), and goes
back to statement 20 to count DGZs again.

(80) If none of the DGZs need an RV, the total number of missiles
used is simply one less than the index for the first missile of the current
(empty) layer. Otherwise, the total number is the index of the first
missile in the current layer. The total number of RVs used is the product
of the total number of missiles used and the number of RVs per missile.
ORDMSS writes an information message in the Status File stating how
many missiles and RVS will be used. Finally, ORDMSS resets the number
of RVs assigned to each DGZ so far to zero and returns control to ASR2TI.

Source File:

ALMOVR2C.FOR

PREPAR

SUBROUTINE PREPAR

Purpose: To prepare data for the Attack File.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN SQUEE2
FMIN SWAP
ISWAP WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE
ATTACK CBATTACK.FOR

LC CBLC.FOR
OouTPUT CBOUTPUT.FOR

File Input/Output:

None

Block

T
WEAPON

$INCLUDE

CBTILLFOR
CBWEAPON.FOR

S

PREPAR

FORTRAN 77 Exceptions:

"an

1. Uses typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

PREPAR copies data for each missile used to a set of one-dimensional
arrays, so data can be sorted in ascending order of launch time. If no
missiles were used, PREPAR calls WRSFMS and SQUEE2 to write a
warning message in the Status File, and then calls ABRTRN to abort the
run. Otherwise, PREPAR calls FMIN, ISWAP, and SWAP to sort the missile
data. PREPAR gets the first and last launch times from the ordered list of
launch times and computes the launch duration.

PREPAR copies data for each RV on each missile used to a set of one-
dimensional arrays, so data can be sorted in ascending order of
downtime. The probability of attrition for each RV is set to zero. If
arrays are somehow empty, PREPAR calls WRSFMS and SQUEE2 to write
a warning message in the Status File, and then calls ABRTRN to abort the
run. Otherwise, PREPARE calls FMIN, ISWAP, and SWAP to sort the RV
data. PREPAR gets the first and last downtimes from the ordered list of
downtimes and computes the laydown duration.

Finally, PREPAR zeros every entry in the array containing probabilities
of fratricide and returns control to ALM.

Source File:

ALMOVER3.FOR

RALLOC

SUBROUTINE RALLOC
Purpose: To read the RV Allocatio:. File.

Input Arquments:

None

QOutput Arguments:

None

Modules Called:

CPCNTR RMLEAD
ORDNAL TRULEN
PLURAL WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block SINCLUDE Block
CNTROL CBCNTROL.FOR Ti
CSTRNG CBCSTRNG.FOR TSTRNG
OUTPUT CBOUTPUT.FOR

File Input/Output:

File Unit No. Description

“case” .RVA 4

RV Allocation File

$INCLUDE

CBTLFOR
CBTSTRNG.FOR

RALLOC

FORTRAN 77 Exceptions:

"

1. Uses typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RALLOC reads the RV allocation data and checks for errors. If an error
is serious, RALLOC writes a warning message in the Status File and either
calls ABRTRN to abort the run, or stops immediately. If an error isn't
~ serious, RALLOC writes a warning message and continues.

After reading the entire file successfully, RALLOC computes the
normalized value of each DGZ in the target island, and the number of
heights of burst used ir: the attack.

Source File:

ALMOVR1A.FOR

RBOOST

SUBROUTINE RBOOST

Purpose: To read the Booster Data File record corresponding to the
missile system to be used in the laydown.

Input Arguments:

None

Output Arguments:

None

Modules Called:

SQUEE2
TRULEN
WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE
CNTROL CBCNTROL.FOR OUTPUT CBOUTPUT.FOR
CSTRNG CBCSTRNG.FOR Tl CBTIL.FOR
LC CBLC.FOR TSTRNG CBTSTRNG.FOR

OPSHNS CBOPSHNS.FOR

RBOOST

File Input/Output:

File Unit No. Description
MPS.BST 4 Booster Data File

FORTRAN 77 Exceptions:

1. Uses "*” typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RBOOST reads a record in the Booster Data File and checks for errors.
If an error occurs, RBOOST writes a warning message in the Status File
and stops immediately.

After reading the record successfully, RBOOST defines the previous
launch time to be 0.0 mirus the time between launches. RBOOST also
divides the number of RVs in the attack by the number of missiles in the
attack and compares the quotient with the number of RVs per weapon.
If the two values aren’t equal, RBOOST calls WRSFMS and SQUEE2 to
write a warning message, and then stops.

If the values agree, RBOOST computes the number of RVs at the
launch complex and returns control to ALM.

Source File:

ALMOVR1A.FOR

RCNTRL

SUBROUTINE RCNTRL

Purpose: Toread the Control File.

Input Arguments:

None

Output Arguments:

None _

Modules Called:

ORDNAL SUM
RMBLKS WRSFFR
RMLEAD WRSFMS
SQUEE2

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE

CNTROL CBCNTROL.FOR OPSHNS CBOPSHNS.FOR
CSTRNG CBCSTRNG.FOR OUTPUT CBOUTPUT.FOR

RCNTRL

File Input/Output:

File UnitNo . Description

“case"” .CF4 5 Control File. EXEC/MMI is expected to
redirect the standard input (logical unit 5
or *) so input comes from the Control File
rather than the keyboard.

- 6 If errors occur before the Status File is
opened, error messages will be displayed
on the screen. _

“case"”.SF4 10 Status File. RCNTRL opens the Status File
by calling WRSFFR, specifying the Status
File should be connected to logical unit
10.

FORTRAN 77 Exceptions:

1. Uses “*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RCNTRL reads records in the Control File and checks for errors. If
errors occur before the Status File is opened, RCNTRL displays a message
on the screen and stops immediately. If the case name and description
are read successfully from the Control File's first record, the Status File is
opened by calling WRSFFR. Thereafter, if errors occur, RCNTRL writes
warning and error messages in the Status File and stops immediately.

If RCNTRL reads the entire file with no errors, it writes an information
message in the Status File and returns control to ALM. If one or more
errors occurred, RCNTRL writes a warning message in the Status File and
stops.

RCNTRL

Source File:

ALMOVR1A.FOR

RLAUNC

SUBROUTINE RLAUNC
Purpose: Toread the Launch Location File.

lnput Arguments:

None

Output Arguments:

None

Modules Called:

CMEAN RMLEAD
COCNTR SQUEE2
ORDNAL TRULEN
PLURAL WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE
CNTROL CBCNTROL.FOR OPSHNS CBOPSHNS.FOR
CSTRNG CBCSTRNG.FOR OUTPUT CBOUTPUT.FOR
LC CBLC.FOR T CBTI.LFOR

LSTRNG CBLSTRNG.FOR

RLAUNC

File Input/Qutput:

File Unit No. Description
“case” .LLF 4 Launch Location File.

FORTRAN 77 Exceptions:

"ot

1. Uses typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RLAUNC reads records in the Launch Location File and checks for
errors. If RLAUNC reads the entire file with no errors, it computes the
launch complex’s centroid and the mean silo elevation (altitude). Then
RLAUNC writes an information message in the Status File and returns
control to ALM. If one or more errors occur, RLAUNC writes a warning
message in the Status File and stops.

Source File:

ALMOVR1B.FOR

#

RPBVFI

SUBROUTINE RPBVFI

Purpose: To read the PBV Data File record corresponding to the missile
system to be used in the laydown.

input Arguments:

None

Output Arguments:

None

Modules Called:

SQUEE2
TRULEN
WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block $INCLUDE
CNTROL CBCNTROL.FOR OUTPUT CBOUTPUT.FOR
CSTRNG CBCSTRNG.FOR WEAPON CBWEAPON.FOR

OPSHNS CBOPSHNS.FOR

File Input/Output:

File UnitNo . Description

MPS.PBV 4 PBV Data File

RPBVFI

FORTRAN 77 Exceptions:

"gn

1. Uses typing for variables.
2. Uses $SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RPBVFI reads a record in the PBV Data File and checks for errors. If an
error occurs, RPBVFI writes a warning message in the Status File and
stops immediately.

After reading the record successfully, RPBVFI defines the number of
RVs on each PBV. RPBVFI also defines the number of the RV on each
missile that's the first to arrive (currently it's either the first or the last).
RPBVFI calls WRSFMS to write an information message in the Status File
and returns control to ALM.

Source File:

ALMOVR1B.FOR

RSSAFE

SUBROUTINE RSSAFE

Purpose: To read the sure-safe time from each Fratricide Constraints

File.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ABRTRN TRULEN
ORDNAL WRSFMS
SQUEE2

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE

CNTROL CBCNTROL.FOR
CSTRNG CBCSTRNG.FOR
OPSHNS CBOPSHNS.FOR

Block

OUTPUT
T
WEAPON

$INCLUDE

CBOUTPUT.FOR
CBTIL.FOR
CBWEAPON.FOR

RSSAFE

File Input/Qutput:

File Unit No. Description

xxx.FCF 4 Fratricide Constraints File. The string “xxx”
represents the file's name. Up to two such
files can be read by ALM.

FORTRAN 77 Exceptions:

1. Uses “*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RSSAFE first sets the sure-safe time associated with each height of
burst (HOB) to an absurd value (-1.0). Then RSSAFE begins a loop over
each Fratricide Constraints File. If errors or premature ends-of-file occur,
RSSAFE writes one or more messages in the Status File and calls ABRTRN
to abort the run. Otherwise, RSSAFE reads the HOB and sure-safe time
from each file. RSSAFE searches the list of HOBs read from the RV
Allocation File for an entry that matches (within 1%) the HOB read from
the current Fratricide Constraints File. If such a match is found, the sure-
safe time is stored in a corresponding list.

After reading all the Fratricide Constraints Files, RSSAFE checks each
sure-safe time. If one of them is -1.0 (the absurd value originally stored
in the list), RSSAFE writes a warning message and calls ABRTRN to abort
the run. Otherwise, RSSAFE writes an information message and returns
control to ALM.

Source File:

ALMOVR1B.FOR

RRVFIL

SUBROUTINE RRVFIL

Purpose: To read the RV Data File record corresponding to the missile
system to be used in the laydown.

Input Arguments:

None

Output Arquments:

None

Modules Called:

SQUEE2
TRULEN
WRSFMS

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE

CNTROL CBCNTROL.FOR
CSTRNG CBCSTRNG.FOR
OPSHNS CBOPSHNS.FOR

File Input/Qutput:

Block $INCLUDE

OUTPUT CBOUTPUT.FOR
WEAPON CBWEAPON.FOR

File Unit No. Description

MPS.RV 4 RV DataFile

RRVFIL

FORTRAN 77 Exceptions:

1. Uses "*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

RRVFIL reads a record in the RV Data File and checks for errors. If an
error occurs, RRVFIL writes a warning message in the Status File and
stops immediately.

After reading the record successfully, RRVFIL calls WRSFMS to write
an information message in the Status File. Then RRVFIL gets the yield
from the array of real weapon data and returns control to ALM.

Source File:

ALMOVR1B.FOR

SPLSRT

Example:

ATTACK DIRECTION

VERTICAL MIDLINE

SPLIT SORTIE 1

ATTACK DIRECTION

® . . FURTHER

-y
~d
s

NN
(oser /
/

VERTICAL MIDLINE

SPLIT SORTIE 2

SPLSRT

SUBROUTINE SPLSRT

Purpose: To split an uprange sortie into halves. The missile will move
uprange in the half with the greater number of DGZs, then
move to the most uprange or most downrange DGZ in the
other haif (depending on which is closer), and then move
either downrange or uprange.

Input Arguments:

None)

Output Arguments:

None

Modules Called:

CDSTNC SRTSRT
FEXT SWPSRT

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR

File Input/Output:

None

S

SPLSRT

FORTRAN 77 Exceptions:

"

1. Uses typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SPLSRT calls FEXT to find the extreme Y-coordinates in the
current sortie. SPLSRT computes the mean of the extremes to establish a
vertical midline that splits the sortie.

SPLSRT executes a loop over the DGZs in the sortie, counting the DGZs
in the left half, and setting flags corresponding to each DGZ. If a DGZ is
in the left half, the flag is .TRUE.; if it's in the right half, the flag is
FALSE.. SPLSRT rearranges the contents of the sortie data lists. The first
part of the lists describes the DGZs in the denser half of the sortie and
the second part of the lists describes DGZs in the sparser half.

SPLSRT calls SRTSRT to sort the data in each part of the lists so DGZs
are in uprange order. Next, SPLSRT computes the distance from the DGZ
at the end of part one to the DGZ at the beginning of part two, and to
the DGZ at the end of part two. If the DGZ at the end of part two is
closer, SPLSRT reverses the order of the data in part two, so that half of
the sortie is a downrange sortie. Then SPLSRT returns control to ASR2T2.

Source File:

ALMOVR2D.FOR

SQUEE2

SUBROUTINE SQUEE2 (MSGTVP, SUBROU)

Purpose: To squeeze multiple blanks from the message buffer and
then write a Status File message.

Input Arguments:

Variable Type Description

MSGTYP INTEGER*2 Message type indicator: 0 =
Information, 1 = Warning, 2 =
Success, 3 = Error, 4 =

Continuation
SUBROU CHARACTER*(*) Name of the subroutine generating
the message

Output Arguments:

None

Modules Called:

SQBLKS
WRSFMS

Calling Modules:

ADDG21 FNPREV RALLOC RSSAFE
ADDGZ2 GETSRT RBOOST TRYFLY
ADJST1 GTBLYR RCNTRL WSORTI
ADLAYR MOVLFT RLAUNCH

ADXTRA ORDMSS RPBVFI

CSTOUT PREPAR RRVFIL

SQUEE2

Common Blocks Used:

Block SINCLUDE
OUTPUT CBOUTPUT.FOR

File iInput/Qutput:

None

FORTRAN 77 Exceptions: -

1. Uses “*" typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SQUEE2 calls SQBLKS to squeeze multiple blanks from the
message; i.e. each sequence of two or more blanks is reduced to a single
blank. If the result is at least one character long, SQUEE2 calls WRSFMS
to write the message in the Status File.

Source File:

ALMROOT.FOR

SQUEE3

SUBROUTINE SQUEES3

Purpose: To squeeze multiple blanks from the message buffer and
then display the message on the screen.

Input Arguments:

None

Output Arguments:

None

Modules Called:

SQBLKS

Calling Modules:

ASR2T2

Common Blocks Used:

Block $INCLUDE
OUTPUT CBOUTPUT.FOR

File Input/Output:

File Unit No. Description

CON * The screen (CONsole) can be accessed using an
asterisk for the logical unit number.

SQUEE3

FORTRAN 77 Exceptions:

1. Uses "*“ typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SQUEE3 calls SQBLKS to squeeze multiple blanks from the
message; i.e., each sequence of two or more blanks is reduced to a single
blank. If the result is at least one character long, SQUEE3 displays the
message on the screen.

Source File:

ALMROOT.FOR

SQUEEZ

SUBROUTINE SQUEEZ

Purpose: To form lists of unique DGZs, starting layer numbers, and the
number of times each DGZ appears in the current sortie; i.e.,
to squeeze out duplicate DGZs from a list of DGZs.

Input Arguments:

None

Qutput Arguments:

None

Modules Called:

SRTSRT

Calling Modules:

FMABAB
FMABBA
MULSRT

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR

File Input/Output:

None

SQUEEZ

FORTRAN 77 Exceptions:

1. Uses

"t

typing for variables.

2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SQUEEZ calls SRTSRT to sort the lists of sortie data, so
DGZs are in uprange order. Then SQUEEZ sets indices for storing data in
the squeezed lists, and for examining data in the original lists, to one.

(10)

(15)

(20)

SQUEEZ stores the current DGZ number, in the original lists, in
the list of unique DGZs. SQUEEZ stores the DGZ's layer number
as the DGZ’'s starting layer. SQUEEZ prepares to examine
subsequent DGZs in the original list, and defines the number of
times the current DGZ appears to be one.

SQUEEZ checks to see if all subsequent DGZs in the original list
have been checked. If so, SQUEEZ goes to statement 20 to
prepare to find another unique DGZ. If not, SQUEEZ compares
the two DGZs to see if they're identical. If so, the number of
times the DGZ appears in the sortie is incremented, the pointer
to the next DGZ is incremented, and SQUEEZ goes back to
statement 15 to check the new DGZ.

SQUEEZ prepares to store data for the next unique DGZ in the
lists, and increments the first index used to examine DGZs in the

original sortie. If there's another DGZ to examine, SQUEEZ goes
back to statement 10.

Otherwise, SQUEEZ defines the number of unique DGZs and returns
control to the calling module.

Source File:

ALMOVR2D.FOR

SRTSR2

SUBROUTINE SRTSR2 (ISTART, ISTOP, LIST)

Purpose: To sort a section of the sortie lists, so integers in one of the
lists are in ascending order.

Input Arguments:

Variable Type

ISTART INTEGER*2

ISTOP INTEGER*2

LIST INTEGER*2
Qutput Arguments:

None

Modules Called:

IFMIN
SWPSRT

Calling Modules:

SRTSRT

Common Blocks Used:

None

File Input/Output:

None

Description

Starting index for lists.
Stopping index for lists.
Array: list of integer sortie data.

SRTSR2

FORTRAN 77 Exceptions:

RY

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SRTSR2 executes a loop over the sets of data specified by
the starting and stopping indices. During each pass, SRTSR2 calls IFMIN
to find the smallest integer in the subset of the specified integer list. To
sort the data, SRTSR2 calls SWPSRT whenever two sets of sortie data
should be swapped.

Source File:

ALMOVR2D.FOR

SRTSR3

SUBROUTINE SRTSR3 (LAST)

Purpose: Tosortthe sortie lists so DGZ values are in ascending order.

Input Arguments:

Variable Type Description

LAST INTEGER*2 Index for last DGZ in current sortie.
Output Arguments:

None

Modules Called:

SWPSRT

Calling Modules:

ADXTRA
MOPUPA

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR
TI CBTIL.FOR

File Input/Qutput:

None

SRTSR3

FORTRAN 77 Exceptions:

"in

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SRTSR3 executes a loop over the number of DGZs
specified by LAST. During each pass, SRTSR3 finds the DGZ with the
highest value in the current subset of the sortie data. To sort the data,
SRTSR3 calls SWPSRT whenever two sets of sortie data should be
swapped.

Source File:

ALMOVR2D.FOR

SRTSRT

SUBROUTINE SRTSRT (ISTART, ISTOP)

Purpose: To sort a section of the sortie lists, so X-coordinates are in
descending order; i.e., so DGZs are in uprange order. if the
same DGZ appears more than once, sort layer numbers so
they're in ascending order.

Input Arguments:

Variable Type

ISTART INTEGER*2

ISTOP INTEGER*2
Output Arguments:

None

Modules Called:

SRTSR2
UPRSRT

Calling Modules:

CHKMLT
GETSRT
MOPUPA

Common Blocks Used:

Block $INCLUDE

SORTEE CBSORTIE.FOR

Description

Starting index for lists.
Stopping index for lists.

SRTSRT

File Input/OQutput:

None

FORTRAN 77 Exceptions:

1. Uses “*” typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SRTSRT calls UPRSRT to sort the specified subset of the
sortie data, so X-coordinates are in descending order. Then SRTSRT
ensures that identical DGZs are contiguous in the lists. (Two different
DGZs could both appear in the lists more than once, and could have the
same X-coordinate. Data for the two DGZs might alternate in the lists.)

SRTSRT then calls SRTSR2 for each subset of data corresponding to a
single DGZ, to ensure layer numbers for the DGZ are in ascending order.

DGZs are in uprange order.
Source File:

ALMOVR2D.FOR

STRSRT

SUBROUTINE STRSRT (JM, BTNEW, PNEW, TOFNEW)
Purpose: To store successful sortie data in arrays corresponding to a
specified missile; to indicate missile has been used; and to

update burntime, pitch, and time-of-flight.

Input Arguments:

Variable Type Description
JM INTEGER*2 Missile index. -
BTNEW REAL*4 New burntime (seconds).
PNEW REAL*4 New booster pitch (degrees).
TOFNEW REAL*4 New time-of-flight (seconds).
Output Arguments:
None

Modules Called:

None

Calling Modules:

ASR2T2 MOPUPB
MOPUPA MOPUPC

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
SORTEE CBSORTIE.FOR

STRSRT

File Input/Qutput:

None

FORTRAN 77 Exceptions:

"ot

1. Uses typing for variables.
2. Uses $SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine STRSRT executes a loop over all DGZs in the sortie, storing
the DGZ index,the downtime, and the layer number in array elements
corresponding to the RVs on the specified missile. STRSRT sets a logical
flag associated with the missile to .TRUE., indicating the missile has been
used. STRSRT copies the new flight parameters to variables specifying

the previous flight parameters. Then control returns to the calling
modaule.

Source File:

ALMOVR2D.FOR

SWPSRT

SUBROUTINE SWPSRT (IA, IB)

Purpose: Toswap two sets of data in the sortie lists.

Input Arguments:

Variable Type Description

1A INTEGER*2 Index for first set to swap.

iB INTEGER*2 Index for second set to swap.
Output Arguments: —

None

Modules Called:

ISWAP
SWAP

Calling Modules:

CROSRT SRTSR2
DWNSRT SRTSR3
SPLSRT UPRSRT

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR

File Input/Output:

None

SWPSRT

FORTRAN 77 Exceptions:

"Hay

1. Uses typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SWPSRT calls ISWAP to swap integer values and SWAP to
swap real values.

Source File:

ALMOVR2D.FOR

SYNEZY

SUBROUTINE SYNEZY (NRVS, LATEST)

Purpose: To synchronize downtimes for RVs in the first layer that are
the first to arrive from their respective missiles. Because the
time between launches is known to be zero, the downtimes
can be truly synchronized.

input Arguments:

Variable Type Description
NRVS INTEGER*2 The number of RVs on each missile.
LATEST REAL*4 The latest downtime among all the RVs in

the first layer that are the first to arrive
from their respective missile.

Output Arguments:

None

Modules Called:

ADIJST4

Calling Modules:

SYNTIM

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
WEAPON CBWEAPON.FOR

SYNEZY

File Input/Qutput:

None

FORTRAN 77 Exceptions:

"o tt

1. Uses typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

Subroutine SYNEZY executes a loop over all missiles used, looking for
missiles whose first RV to arrive is in the first layer. For each such missile,
SYNEZY subtracts the downtime of the first RV to arrive from the latest
downtime supplied as an input argument. If the difference is greater
than zero, SYNEZY calls ADJST4 to adjust the launch time and the
downtime for every RV on the missile (times are adjusted by adding the
difference just computed to the launch time and to every downtime).

Source File:

ALMOVR2D.FOR

SYNTIM

SUBROUTINE SYNTIM

Purpose: To “synchronize” downtimes for RVs in the first layer that
are the first to arrive from their respective missiles. If the
time between launches is greater than zero, true
synchronization is impossible. The most one can hope for is
to minimize the span of downtimes.

Input Arguments:

None

Output Arguments:

None

Modules Called:

ADIJSTS
SYNEZY

Calling Modules:

ASR2TI

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR
Tl CBTL.FOR

WEAPON CBWEAPON.FOR

File Input/Output:

Ncne

SYNTIM

FORTRAN 77 Exceptions:

"

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

If the time between launches is zero, subroutine SYNTIM executes a
loop over all missiles used, looking for missiles whose first RV to arrive is
in the first layer. SYNTIM finds the latest downtime among those RVs.
Then SYNTIM calls SYNEZY to synchronize the downtimes for those RVs.

If the time between launches is greater than zero, SYNTIM calls
ADJSTS to minimize the span of downtimes for first-layer RVs.

Source File:

ALMOVR2D.FOR

TRYFLY

SUBROUTINE TRYFLY (POSSBL)

Purpose: To fly a missile from the silo closest to the target island, and
to determine if it can drop all its RVs on the DGZ furthest
from the launch complex.

Input Arguments:

None

Output Arguments:
Variable Type
POSSBL LOGICAL*1

Modules Called:

CHKSRT PRPNTS
FMAX SQUEE2

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE

LC CBLC.FOR
OPSHNS CBOPSHNS.FOR
OUTPUT CBOUTPUT.FOR

Description

Flag: If .TRUE., it's possible to fly
the missile and deploy RVs

successfully.

Block

SORTEE
Tl
WEAPON

$INCLUDE

CBSORTIE.FOR
CBTLFOR
CBWEAPON.FOR

TRYFLY

File input/Qutput:

None

FORTRAN 77 Exceptions:

1. Uses “*“ typing for variables.
2. Uses SINCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

TRYFLY calls PRPNTS to project all DGZs onto a plane tangent to the
earth at the target island’s centroid. The negative X-axis points up-
range to the launch complex and the positive X-axis, downrange.
TRYFLY calls FMAX to find the DGZ furthest from the launch complex;
i.e., the DGZ with the maximum X-coordinate.

TRYFLY calls PRPNTS again to project all missile silos onto the same
tangent plane. TRYFLY calls FMAX again to find the silo with the
maximum X-coordinate; i.e., the silo closest to the target island. TRYFLY
forms a sortie consisting of the DGZ furthest from the launch complex,
repeated until there are as many DGZs in the sortie as there are RVs on
the missile.

TRYFLY calls CHKSRT to see if the missile can do the sortie. If so,
TRYFLY returns control to ALM with POSSBL set to .TRUE.; if not, TRYFLY
returns with POSSBL set to .FALSE..

Source File:

ALMOVR1B.FOR

UNDO

SUBROUTINE UNDO

Purpose: To undo a failed sortie; i.e., to restore values to what they
were before the sortie was formed.

Input Arguments:

None

Output Arguments:

None

Modules Called:

None

Calling Modules:

ASR2T2 MOPUPB
MOPUPA MOPUPC

Common Blocks Used:

Block $INCLUDE
LC CBLC.FOR
SORTEE CBSORTIE.FOR

File Input/Qutput:

None

Block

Tl
WEAPON

$INCLUDE

CBTIL.FOR
CBWEAPON.FOR

FORTRAN 77 Exceptions:

e

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

UNDO restores the former value of “previous launch time“ by
subtracting time between launches from its current value. UNDO
executes a loop over the DGZs in the current sortie, decrementing the
number of RVs assigned so far to each DGZ. Then UNDO returns control
to the calling module.

Source File:

ALMOVR2D.FOR

UPRSRT

SUBROUTINE UPRSRT (FIRST, LAST)

Purpose: To sort data in a subset of the sortie lists, so DGZs are in up-

range order.

Input Arguments:

Variable Type
FIRST INTEGER*2
LAST INTEGER*2

Qutput Arguments:

None

Modules Called:

FMAX
SWPSRT

Calling Modules:

ASR2T2
SRTSRT

Common Blocks Used:

Block $INCLUDE
SORTEE CBSORTIE.FOR

File Input/Output:

None

Description

Index for first entry in lists.
Index for last entry in lists.

UPRSRT

FORTRAN 77 Exceptions:

"t

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

UPRSRT executes a.loop over the range of entries specified by FIRST
and LAST, performing a bubble sort on X-coordinates. UPRSRT calls
FMAX to find the maximum X-coordinate, and calls SWPSRT to swap sets
of sortie data. The result is shown in the example below.

Source File:

ALMOVR2D.FOR

Example:

ATTACK DIRECTION

7
-

UPRANGE SORTIE

WSORTI

SUBROUTINE WSORTI
Purpose: To write the Sortie File.

Input Arguments:

None

Output Arquments:

None

Modules Called:

SQUEE2

Calling Modules:

ALM

Common Blocks Used:

Block $INCLUDE Block
CNTROL CBCNTROL.FOR OUTPUT
CSTRNG CBCSTRNG.FOR TI

LC CBLC.FOR TSTRNG
LSTRNG CBLSTRNG.FOR WEAPON

OPSHNS CBOPSHNS.FOR

File Input/Qutput:

File Unit No. Description

"case” .SF 4 Sortie File

$INCLUDE

CBOUTPUT.FOR
CBTLFOR
CBTSTRNG.FOR
CBWEAPON.FOR

WSORTI

FORTRAN 77 Exceptions:

"ot

1. Uses typing for variables.
2. Uses $INCLUDE, $PAGE, and $SUBTITLE metacommands.

Description:

WSORTI! opens the Sortie File, writes records according to the I0PT in
Section 4, and then closes the file. If errors occur, WSORTI writes a
warning message in the Status File and stops.

Source File:

ALMOVER3.FOR

APPENDIXD
COMMON BLOCK LIST

This appendix lists all common
blocks that are unique to the ALM CSC
and provides a brief description of the
type of data contained in each. The user
is referred to Reference 2 for a
description of the common blocks used
exclusively in the TARGET CSC
" modules that are employed by ALM to
assess sortie feasibility.

Note that Microsoft FORTRAN
forbids mixing character variables with
other kinds of variables in the same
common block. Consequently, several
pairs of common blocks are used. Both
members of a pair might contain data
read from the same input file, for
example, but one contains character
data only, while the other contains
integer, real, and logical data.

ATTAKK

CNTROL

CSTRNG

LC

LSTRNG

OPSHNS

OUTPUT

SORTEE

TSTRNG

ALM COMMON BLOCK LIST

Variables that describe the attack; e.g. the DGZ attacked by each
RV. NOTE: The block's name is deliberately spelled ATTAKK
because subroutines shared by the ALM and TARGET CSCs use
another block spelled ATTACK.

Integers read from the Control File and auxiliary values associated
with them; e.g. number of Fratricide Constraints Files to use, and
the length of each input file's name.

Character strings read from the Control File; e.g. the Attack File's
name.

Launch complex data; e.g. silo latitudes and longitudes.
A character string containing the launch complex's name.

Options read from the Control File; the flag indicating whether or
not to minimize the span of RV downtimes.

A buffer used to write Status File messages, and an integer
specifying the message length. Note that a character variable is
combined with an integer variable in this common block. Since the
character variable comes last, the combination is acceptable.

Variables describing the current sortie; e.g. the downtimes for each
RV in the sortie. The block’s name is deliberately spelled SORTEE
because the TARGET library contains a subroutine named SORTIE.

Variables describing the target island; e.g. latitudes and longitudes
for each DGZ.

A character string containing the target island's label.

WEAPON Variables describing the weapon (missile) us-d to attack the target
island; e.g. the yield in kilotons.

APPENDIXE
COMMON BLOCK CROSS REFERENCE

This Appendix provides a common
block cross reference that shows the
common blocks used by each module, and
the modules that use each common
block. COMMON block names are used

as column headings across the top of the
figure: module names run down the left
side. Module names marked with an
asterisk are in the MPS Utilities
Library; see Reference 3.

3
4

MODUL

COMMON BLOCK

|ATTAKK

CNTROL

{CSTRNG

L

'LSTRNG

{OPSHNS

JOUTEST

SCRTIE

TSTRNG

STUNUS
SWNSRY
FCVPOL
FEXT
FMABAB
EMABBA
EMAX
EMIN
ENFRTH
FNHIGH
FNORM
FNPREV
FNVRTS
FXLYRS
GETSRY
aT8LYZ
GTBLYR
1EMIN
1SWAP
MOPUP
MOPUPA
“oPUPB
“OPUPC
MCYLFT
MULSRT
JRDDGS
ORDER
ORDMSS
ORONAL
PLURAL
PREPAR
PRPNTS
RALLOC
RBOOST
RCNTRL
RULAUNC

DuLEAD
RPBVF]
RRVFIL
RSSAFE
SPLSRT
SQBLKS
SQUEE2
SQUEE3
SQUEEZ
SRTSR2
SRTSR3

RMBLKS *

aasEdw

L2 44)

| seswns

attwed

[2 2 2323

LAl 133

(242244

} AR ERR

LA 2224
AREBAN
L2124
L2 23243

TRERNE
*broow

AREve®

*RAERE

ARG RS
TRRENS
L1121 2]
AENSRE

AERANE
SRERES

ARBAER

twpend
SRARER

rREREN

L2211}
RRENAR
ARFARY

TEIANR

| wemwww

122223

TREEWE

TReRTY

AAKKRR

b2 2 424]

122211
SRRy
rERWNS
(2222 1)
AT

L2224 3

LA 2 421

TRNREN

L2124 22

L 12 24 2]

1

SATREE

hERERY

(22222

(22222

R 2 2322

. SRNtwE

| wREERS

AERTAY

ERATA®

L2222 3]

L2 2222

L2 2223
L2312 2)

ARERYS

 anrere

C BERRES

b ———

ATRREN

rexwny
L2222 2]

sergEw

TERAWE

LA A 2 d

TEAWEE

wEwEwR

RTw YW
wEeeww

Kewen

Trsanw

TERERE

eYNRTTL

wEwwRrR
LAl ARl 4
fRREeR

L322 23]

LA R AR

(AT 22 2]

‘ twewww

etprsrww

swmwew

sereEm

sSwerEn

sswwew

XEANEN

swmEwEN

TRERNRE

exgenw

exswRR

swRRER

wewTRE

swETmww

AR EE

LA 2222
weteww
ewewen
12222 2]

awERwn

rrwwwe

L2 2 2 2 22

rrreww

sxrvww

snvens

AT wE

AwRERS

wnwews

foswawew

AARBTREN

reewwn

(22222

TEBRR Y

wERREN

axRTww

(2222 2]

owmsEAR

L2222 0]

122222

weEweN
L2222 2]
TN
ereeew

zERRER

swwEnw

ISX822)

xETERR

23222]

*nseee

T2 L 2]

TEweRw

trwwrw

LR EEREY

reveve

aseeve

xeerer

srvrew

ssrven

vvevee

evevew

sssvee

Tveves

ssrvve

enwrnn

R L

~
)

MODULF

COMMON BLOCK

o T v ag

ATTAKK CNTROL CSTRNG e LSTRNG !CPS”NS o Ra={0h $2aTvis EREA wZAFTN
SRTSRT ; |
STRSRT | i teenew i sswene
SUM . f ;
SuAp * f ;
SWPSRT i . . sswuwwse
SYNE2Y e | , veraes
SYNTIM reseny | cerses aseens
TRULEN * | :
TRYFLY t AL A S]] ; ! seeenw ! sewwesw arnwEn suumws PP
UNDO LAA A A A ! l i remEne arwnry P
UPRSRT . : ' : rerwes
WATTCK * | ; | !
WRSFFR * g i | !
WRSFMS * . ; g
MTI ARARAY AARRRE : LA 2 sl l] ; Ai 2 it] LA 43 22 Li 2 242 FEXTES ceeweee srrESY

N i

COMMON BLOCK CROSS REFERENCE

APPENDIX F
COMMON BLOCK DEFINITIONS

Appendix F identifies and describes in dimensioning common arrays are
all common blocks used in the ALM CSC. cross referenced to the document where
Every common variable is identified and they are defined.
defined. Additionally, parameters used

ATTAKK COMMON

COMMON block /ATTAKK/ is defined in the FORTRAN source fi..
CBATTACK.FOR. The block’s name is deliberately misspelled because the TARGET
library contains a block named ATTACK. The file is inserted in any module

requiring attack data using the $INCLUDE metacommand. The file's contents are as
follows:

INTEGER*2 DGZ4R2, DGZTY2, HOBIN2, MSL4RV, MSLIND, ORDINM

REAL*4 DGZLA2,DGZLO2, DWNTI2, EARDT, EARLT, LATDT,
LATLT, LDURAT, LYDRAT, MISLA2, MISLO2, PATTRI,
PFRATR, TLNCH2

1
2

COMMON /ATTAKK/DGZ4R2(MRVST), DGZLA2(MRVST), DGZLO2(MRVST),
DGZTY2(MRVST), DWNTI2Z(MRVST), EARDT, EARLT,
HOBIN2(MRVST), LATDT, LATLT, LDURAT, LYDRAT,
MISLA2(MMSLS), MISLO2(MMSLS), MSL4RV(MRVST),
MSLIND(MMSLS), ORDINM(MRVST), PATTRI(MRVST),
PFRATR(MPROBS), TLNCH2(MMSLS)

1

N e W N

Variable Type Definition

DGZ4R2(I) INTEGER*2 Array: DGZ index for I-th RV to arrive at
target island

DGZLA2(I) REAL*4 Array: latitude for I-th RV's DGZ
(degrees North)

DGZLO2(I) REAL*4 Array: longitude for I-th RV’s DGZ
(degrees East)

DGZTY2(I) INTEGER*2 Array: type of DGZ attacked by I-th RV

DWNTI2(I) REAL*4 Array: downtime for I-th RV (seconds)

EARDT REAL*4 Earliest downtime (seconds)

EARLT REAL*4 Earliest launch time (seconds)

HOBIN2(I)
LATDT
LATLT
LDURAT
LYDRAT
MISLA2(I)

MISLO2(I)

MSL4RV(D
MSLIND(I)
ORDINM(D)
PATTRI(I)
PFRATR(K)

TLNCH2(I)

Parameter

MMSLS
MPROBS
MRVST

INTEGER*2
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4

REAL*4

INTEGER*2
INTEGER*2
INTEGER*2
REAL*4
REAL*4

REAL*4

Where Defined

MAXIMA FIF
MAXIMA FIF
MAXIMA. FIF

Array: height of burst index for I-th RV
Latest downtime (seconds)
Latest launch time (seconds)
Launch time duration (seconds)
Laydown duration (seconds)
Array: I-th missile silo’s latitude
(degrees North)
Array: I-th missile silo’s longitude
(degrees East)
Array: I-th RV’s missile
Array: I-th missile silo’s index
Array: I-th RV’sorder in missile
Array: probability of attrition for I-th RV
Array: probability of fratricide for J-th
RV (J = 2,3,4,...);i.e. probability that I-
thRV({I =1,2,3,...,J-1) destroys J-th
RV.

K=J*%J-3y2+1+1
Array: I-th missile’s launch time
(seconds)

Where Documented
Reference 1

Reference 1
Reference 1

CNTROL COMMON

COMMON block /CNTROL/ is defined in the FORTRAN source file
CBCNTROL.FOR. The file is inserted in any module requiring control data using the
$INCLUDE metacommand. The file's contents are as follows:

INTEGER*2 LATKFI, LBOOFI, LCSDES, LCSNAM, LFCPAT
INTEGER*2 LLNLFI, LMSLNA, LPBVFI, LRVAFI, LRVFIL, LSORFI
INTEGER*2 NFCFLS, NMODLS, RNBOOF, RNPBVF, RNRVFI

COMMON /CNTROL/ LATKFI, LBOOFI, LCSDES, LCSNAM, LFCPAT,
1 LLNLFI, LMSLNA, LPBVFI, LRVAFI, LRVFIL, LSORFI,
2 NFCFLS, RNBOOF, RNPBVF, RNRVFI

EQUIVALENCE (NFCFLS, NMODLS)

Variable Type Definition

LATKFI INTEGER*2 Length of attack file’s name (includes
path)

LBOOFI INTEGER*2 Length of booster file’s name (includes
path)

LCSDES INTEGER*2 Length of case descriptor

LCSNAM INTEGER*2 Length of case name

LFCPAT INTEGER*2 Length of path for fratricide constraint
files

LLNLFI INTEGER*2 Length of launch location file’s name

LMSLNA INTEGER*2 Length of missile name

LPBVFI INTEGER*2 Length of PBV file's name

LRVFIL INTEGER*2 Length of RV file’s name

LRVAFI INTEGER*2 Length of RV allocation file’s name

LSORFI INTEGER*2 Length of sortie file’s name

NFCFLS INTEGER*2 Number of fratricide constraints files to

use

RNBOOF INTEGER*2 Record number for booster file
RNPBVF INTEGER*2 Record number for PBV file
RNRVFI INTEGER*2 Record number for RV file

CSTRNG COMMON

COMMON block /CSTRNG/ is defined in the FORTRAN source file
CBCSTRNG.FOR. The file is inserted in any mowule requiring control data (in the
form of character strings) using the $SINCLUDE metacommand. The file's contents

are as follows:

CHARACTER*8

CHARACTER*12
CHARACTER*20
CHARACTER*40
CHARACTER*60
CHARACTER*60

CSNAME
FCNAME
MSLNAM
CSDESC

ATKFIL, BOOFIL, FCPATH, LNLFIL, PBVFIL, RVFILE
RVAFIL, SORFIL

COMMON/CSTRNG/ ATKFIL, BOOFIL, CSDESC, CSNAME, FCNAME(MHOBS)

1
2

Variable

ATKFIL
BOOFIL
CSDESC
CSNAME

FCPATH, LNLFIL, MSLNAM, PBVFIL, RVFILE,
RVAFIL, SORFIL

FCNAME

FCPATH
LNLFIL

MSLNAM
PBVFIL
RVAFIL

Type Definition

CHARACTER*60 Attack file’s name (includes path)

CHARACTER*60 Booster file’s name (includes path)

CHARACTER*40 Case description

CHARACTER*8 Case name

CHARACTER*12 Name of I-th fratricide constraints
file

CHARACTER*R0 Path for fratricide constraints files

CHARACTER*60 Launch location file’s name
(includes path)

CHARACTER*20 Missile name

CHARACTER*60 PBYV file’s name (includes path)

CHARACTER*60 RV allocation file’s name (includes

path)

RVFILE
SORFIL

Parameter

MHOBS

CHARACTER*60
CHARACTER*60

Where Defined

MAXIMA FIF

RV file’s name (includes path)
Sortie file’s name (includes path)

Where Documented

Reference 3

LC COMMON

COMMUON block /LC/ is defined in the FORTRAN source file CBLC.FOR. The

file is inserted in any module requiring launch complex data using the $INCLUDE
metacommand. The file's contents are as follows:

INTEGER*2 DGZ4RV,LAYER,LLCLAB, NMSLLC, NMUSED, NRUSED
INTEGER*2 NRVSLC, NSILOS, ORMSLS
LOGICAL*1 -COLOCA,USDMSL

REAL*4 BRNTIM, DWNTIM, LCELEV, LCLAT, LCLON
REAL*4 MISALT, MISLAT, MISLON, PITCH, PLTIME, TLNCH
REAL*4 TOFLC, XSILO, YSILO

COMMON /LC/ BRNTIM, COLOCA, DGZ4RV(MRVSM,MMSLS)
DWNTIM(MRVSM,MMSLS), LAYER(MRVSM,MMSLS),
LCELEV, LCLAT, LCLON, LLCLAB,

MISALT(MMSLS), MISLAT(MMSLS),

MISLON(MMSLS), NMSLLC, NMUSED, NRUSED, NRVSLC,
ORMSLS(MMSLS), PITCH, PLTIME, TLNCH(MMSLS),
TOFLC, USDMSL(MMSLS), XSILO(MMSLS), YSILO(MMSLS)

D N W -

EQUIVALENCE (NMSLLC, NSILOS)

Variable Type Definition
~ BRNTIM REAL*4 Initial (default) burntime in seconds

COLOCA LOGICAL*1 Flag: if TRUE., missiles are co-located;
i.e. have identical coordinates

DGZ4RV(1,J) INTEGER*2 Array: DGZ for I-th RV on J-th missile

DWNTIM(,J) REAL*4 Array: downtime (seconds) for I-th RV on
J-th missile

LAYER(,J) INTEGER*2 Array: layer number for I-th RV on J-th

missile

LCELEV
LCLAT
LCLON
LLCLAB
MISALT()
MISLAT(I)

MISLON(I)

NMSLLC

NMUSED

NRUSED

NRVSLC

NSILOS

ORMSLS(I)

PITCH

PLTIME
TLNCH()

TOFLC

REAL*4
REAL*4
REAL*4
INTEGER*2
REAL*4
REAL*4

REAL*4

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

REAL*4

REAL*4
REAL*4

REAL*4

Launch complex’s elevation (altitude) in
feet

Launch complex’s latitude (in degrees
North)

Launch complex’s longitude (in degrees
East)

Length of launch complex label

Array: I-th missile’s altitude (in feet)
Array: I-th missile’s latitude (in degrees
North)

Array: I-th missile’s longitude (in
degrees East)

Number of missiles (silos) at launch
complex. Read from Launch Location
File.

Number of missiles used. Computed
during run: NMUSED < = NMSLLC.
Number of RVs used: product of number
of missiles used (NMUSED) and number
of RVs per weapon (NRVSWP, in
COMMON block /WEAPONY/).

Number of RVs at launch complex:
product of number of missiles at launch
complex (NMSLLC) and number of RVs
per weapon (NRVSWP, in COMMON
block /WEAPONY/).

Number of silos (missiles) at launch
complex; synonym for NMSLLC

Array: Index (subscript, pointer) of I-th
missile to use

Initial (default) booster pitch angle
(degrees)

Previous launch time (seconds)

Array: launch time for I-th missile
(seconds)

Initial (default) time-of-flight (seconds)

USDMSL(I)

XSILO(I)

YSILO(I)

Parameter

MMSLS
MRVSM

LOGICAL*1

REAL*4

REAL*4

Where Defined

MAXIMA FIF
MAXIMA FIF

Array: flag: if TRUE,, I-th missile was
used

Array: tangent-plane X-coordinate for
I-th silo

Array: tangent-plane Y-coordinate for
I-th silo

Where Documented

Reference 3
Reference 3

LSTRNG COMMON

COMMON block /LSTRNG/ is defined in the FORTRAN source file
CBLSTRNG.FOR. The file is inserted in any module requiring the launch complex's
label using the $iNCLUDE metacommand. The file's contents are as follows:

CHARACTER*24 LCLABL
COMMON/LSTRNG/LCLABL

Variable Type Definition

LCLABL CHARACTER*24 Launch complex’s label

OPSHNS COMMON

COMMON block /OPSHNS/ is defined in the FORTRAN source file
CBOPSHNS.FOR. The file is inserted in any module requiring Control File options
using the $INCLUDE metacommand. The file's contents are as follows:

LOGICAL*1 SYNCRO
LOGICAL*4 ROTRTH, SPACED

REAL*4 FCFHOB, FRF4RX, GAMMA, SHRSAF, TBLAYR

COMMON /OPSHNS/ FCFHOB(MHOBS), FRF4RX, GAMMA, ROTRTH,

1 SHRSAF(MHOBS), SPACED, SYNCRO,
2 TBLAYR(MLAYRS-1)
Variable Type Definition

FCFHOB(I) REAL*4
FRF4RX REAL*4
GAMMA REAL*4
ROTRTH LOGICAL*4
SHRSAF(I) REAL*4
SPACED LOGICAL*4

SYNCRO LOGICAL*1

TBLAYR(I) REAL*4

Array: Height of burst read from I-th
fratricide constraints file; in kilofeet
Maximum fraction of fuel to use for range
extension

Reentry angle (degrees) for all RVs; if zero, use
minimum energy reentry angle

Flag: if TRUE., use rotating earth

Array: sure-safe time read from I-th fratricide
constraints file; in seconds

Flag: if TRUE., RVs should be spaced at least
a minimum distance apart at the spacing
reference altitude

Flag: f.TRUE,, downtimes should be
synchronized (or the span of downtimes should
be minimized)

Array: time between I-th and I + 1-th layers
(seconds)

Parameter Where Defined Where Documented

NHOBS MAXIMA FIF Reference 3
MLAYRS MAXIMA FIF Reference 3

OUTPUT COMMON

COMMON block /OUTPUT/ is defined in the FORTRAN source file
CBOUTPUT.FOR. The file is inserted in any module requiring an output message
buffer using the INCLUDE metacommand. The file's contents are as follows:

CHARACTER*48 MESSAG
INTEGER*2 LENGTH

COMMON/OUTPUT/ LENGTH, MESSAG

Variable Type Definition

LENGTH INTEGER*2 Length of message (or other string)
MESSAG CHARACTER*48 Buffer for status file messages

SORTEE COMMON

COMMON block /SORTEE/ is defined in the FORTRAN source file
CBSORTIE.FOR. The block’s name is deliberately misspelled because the TARGET
library contains a subroutine named SORTIE. The file is inserted in any module

requiring sortie data using the $INCLUDE metacommand. The file's contents are as
follows:

INTEGER*2 DGZSRT, LYRSRT, NGZSRT, NTIMES, NUNEEK, STRLYR, UNEEK
REAL*4 DT4SRT, LATSRT, LONSRT, XSRT, YSRT

COMMON /SORTEE/ DGZSRT(MRVSM), DT4SRT(MRVSM),

1 LATSRT(MRVSM), LONSRT(MRVSM), LYRSRT(MRVSM),
2 NGZSRT, NTIMES(MRVSM) ‘'UNEEK, STRLYR(MRVSM),
3 UNEEK(MRVSM), XSRT(MRVSM), YSRT(MRVSM)
Variable Type Definition
DGZSRT() INTEGER*2 Array: DGZ for I-th RV in the sortie
DT4SRT(I) REAL*4 Array: downtime for I-th RV in the sortie
LATSRT(I) REAL*4 Array: latitude for I-th DGZ in the sortie
LONSRT(I) REAL*4 Array: longitude for I-th DGZ in the
sortie
LYRSRT(I) INTEGER*2 Array: layer number for I-th RV in the
sortie
NGZSRT INTEGER*2 Number of DGZs (RVs) in the sortie
NTIMES(I) INTEGER*2 Array: number of times the I-th unique
DGZ appears in the sortie
NUNEEK INTEGER*2 Number of unique DGZs in the sortie
STRLYR(I) INTEGER*2 Array: starting layer number for I-th
unique DGZ in the sortie
UNEEK() INTEGER*2 Array: I-th unique DGZ number in che

sortie

XSRT() REAL*4 Array: X-coordinate for I-th DGZ in the

sortie

YSRT(I) REAL*4 Array: Y-coordinate for I-th DGZ in the
sortie

Parameter Where Defined Where Documented

MRVSM MAXIMA FIF Reference 3

TI COMMON

COMMON block /TU is defined in the FORTRAN source file CBTLFOR. The
file is inserted in any module requiring target island data using the $INCLUDE
metacommand. The file's contents are as follows:

INTEGER*2 DGZDES, DGZNUM, DGZTYP, HIMAX, HIMIN, HOBIND
INTEGER*2 LTILAB, NGZSTI, NHOBS, NMATTI, NRATTI, NRSOFR
INTEGER*2 NRVDGZ, ORDGZS, ORDRVS

LOGICAL*1 OUTCST, VERTEX
REAL*4 DGZLAT, DGZLON, HOB
REAL*4 TIELEV, TILAT, TILON
REAL*4 VALUE, XDGZ, YDGZ

COMMON /Tl DGZLAT(MDGZS), DGZLON(MDGZS), DGZNUM(MDGZS),

1 DGZTYP(MDGZS), HIMAX, HIMIN, HOB(1:MHOBS),

2 HOBIND(MDGZS), LTILAB, NGZSTI, NHOBS, NMATTI,

3 NRATTI, NRSOFR(MDGZS), NRVDGZ(MDGZS),

4 ORDGZS(MDGZS), OUTCST(MDGZS), TIELEV, TILAT, TILON,
5 VALUE(MDGZS), VERTEX(MDGZS),

6 XDGZ(MDGZS), YDGZ(MDGZS)

DIMENSION DGZDES(MDGZS)

EQUIVALENCE (DGZDES, DGZNUM)

Variable Type Definition
DGZLAT(I) REAL*4 Array: latitude of I-th DGZ (degrees
' North)
DGZLON(I) REAL*4 Array: longitude of I-th DGZ (degrees

East)

DGZNUM(D
HIMAX
HIMIN
NGZSTI

NHOBS

NMATTI

NRATTI

NRSOFR(I)

NRVDGZ()

ORDGZS(I)

OUTCST(I)

TIELEV

TILAT
TILON

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

LOGICAL*1

REAL*4

REAL*4
REAL*4

Array: four-digit integer identifying I-th
DGZ

Array: maximum height of burst index
found in RV Allocation file

Minimum height of burst index found in
RV Allocation file

Number of DGZs in target island
Number of heights of burst in the attack.
Equals number of unique height of burst
indices found in RV Allocation File.
Number of missiles attacking target
island. Read from RV Allocation File.
Should be less than or equal to number of
missiles in launch complex (NMSLLC, in
COMMON block /LC/. Number of
missiles actually used (NMUSED, in
COMMON block /LC/) may be less than
NMATTIL

Number of RVs attacking target island.
Read from RV Allocation File. Should be
product of NMATTI and number of RVs
per weapon (NRVSWP, in COMMON
block /WEAPONY/).

Array: number of RVs assigned, so far, to
I-th DGZ

Array: number of RVs allocated to I-th
DGZ (read from RV Allocation File)
Array: index (subscript, pointer) to I-th
DGZ, when sweeping from right to left
Array: flag: if TRUE., I-th DGZ is an
"outcast";i.e. unreachable

Centroid's elevation (altitude) in feet
Centroid's latitude (degrees North)
Centroid's longitude (degrees East)

VERTEX(I)

XDGZ(I)

YDGZ()

Parameter

MDGZS

LOGICAL*1

REAL*4

REAL*4

Where Defined

MAXIMA. FIF

Array: flag: if TRUE,, I-th DGZ is one
vertex of a convex polygon enclosing all
DGZs

Array: tangent-plane X-coordinate of I-th
DGZ

Array: tangent-plane Y-coordinate of I-th
DGZ

Where Documented

Reference 3

COMMON block /WEAPON/ is defined in the FORTRAN source file
CBWEAPON FOR. The file is inserted in any module requiring weapon data using

WEAPON COMMON

the $INCLUDE metacommand. The file's contents are as follows:

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*4

REAL*4

PARAMETER
PARAMETER
PARAMETER

PARAMETER
PARAMETER
PARAMETER

PARAMETER
PARAMETER
PARAMETER

PARAMETER
PARAMETER
PARAMETER

PARAMETER
PARAMETER

FIBV, FIPV, FIRV, FRBV, FRPV, FRRV, FRVIN
LIBV, LIPV, LIRV, LRBV, LRPV, LRRV

MIWVS, MRWVS, NPBVSM, NRVSMS, NRVSPB
NRVSWP, NWPUSD

IWPDAT
TMBLNC, WPNDAT, YIELD

(FIBV =1)
(FIRV = FIBV + MIBVS)
(FIPV = FIRV + MIRVVS-1)

LIBV = FIRV -1)
(LIRV = FIPV - 1)
(LIPV = FIPV + MIPVS-1)

(FRBV =1)
(FRRV = FRBV + MRBVS-3)
(FRPV = FRRV + MRRVVS- (2 + MSHOBS + 4))

(LRBV = FRRV -1)
(LRRV = FRPV -1)
(LRPV = FRPV + MRPVS-1)

(MIWVS = LIPV)
(MRWVS = LRPV)

COMMON 'WEAPON/FRVIN, IWPDAT(MIWVS), NPBVSM, NRVSPB, NRVSWP,
1 NWPUSD, TMBLNC, WPNDAT(MRWVS), YIELD

EQUIVALENCE (NRVSMS, NRVSWP)

Variable Type Definition

BRLEN INTEGER*2 Booster record length {20-character booster
name plus 4 times number of 4-byte (integer)
values plus 4 times number cf 4-hyte (real)
values]

FIBV INTEGER*2 Index for first integer booster value in
IWPDAT

FIPV INTEGER*2 Index for first integer PBV value in IWPDAT

FIRV INTEGER*2 Index for first integer RV value in IWPDAT

FRBV REAL*4 Index for first real booster value in WPNDAT

FRPV REAL*4 Index for first real PBV value in WPNDAT

FRRV REAL*4 Index for first real RV value in WPNDAT

FRVIN INTEGER*2 First RV in (into a target island) among the
RVson any given weapon. It's either the first
or the last RV on a missile; it can't be any RV

_ in between.

IWPDAT INTEGER*4 Array: contains integer weapon data passed to
subroutine CHKSRT

LIBV INTEGER*2 Index for last integer booster value in
IWPDAT

LIPV INTEGER*2 Index for last integer PBV value in IWPDAT

LIRV INTEGER*2 Index for last integer RV value in IWPDAT

LRBV REAL*4 Index for last real booster value in WPNDAT

LRPV REAL*4 Index for last real PBV value in WPNDAT

LRRV REAL*4 Index for last real RV value in WPNDAT

MIWVS INTEGER*2 Maximum number of integer weapon valuesin
IWPDAT

MRWVS INTEGER*2 Maximum number of real weapon valuesin

WPNDAT

NPBVSM
NRVSMS
NRVSPB
NRVSWP
NWPUSD
PRLEN

RRLEN

TMBLNC

WPNDAT

YIELD

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2

REAL*4

REAL*4

REAL*4

Number of PBVs per missile

Number of RVs per missile (= NRVSWP)
Number of RVs per PBV

Number of RVs per weapon (= NRVSMS)
Number of weapons used

PBV record length {20-character PBV name
plus 4 times number of 4-byte (integer) values
plus 4 times number of 4-byte (real) values]
RV record length [20-character RV name plus
4 times number of 4-byte (integer) values plus
4 times number of 4-byte (real) values]
Minimum time between launches (seconds)
Array: contains real weapon data for
subroutine CHKSR1

Yield in kilotons, read from RV Data File

APPENDIX G
PARAMETER DEFINITIONS

This Appendix identifies and
defines all parameters that are unique to
the ALM CSC. Other parameters used
by the ALM CSC are defined by the MPS
Utilities support software and are
described in Reference 3 (see,
MAXIMA FIF); or are defined in the

TARGET CSC Maintenance Manual _

(Reference 2) and are needed exclusively
by TARGET modules used by the ALM
to assess sortie feasibility.

A set of parameters are defined and
used within COMMON block

/WEAPON/. See Appendix F, where the
parameters as well as the variables in
the block are described. In most (but not
all) modules the CHARACTER*6
parameter S is defined to be the module’s
name; e.g. in RALLOC, the following
definition appears:

PARAMETER (S = ‘RALLOC")
All other parameters used by the

ALM are defined locally and apply only
to the module in which they’re defined.

APPENDIX H
DATA FLLOWDIAGRAM SYMBOLOGY

The Data Flow Diagram (DFD) is a
graphic presentation of the partitioning
of a system into a network of processes
and their data interfaces. The DFD is a
representation of the transformation of
data. It identifies processes to be
performed and the data which flows
between processes. The DFD does not
indicate processing sequence or logical
A DFD is composed of four
basic elements: data flows, processes,

decisions.

SOURCE

DATA FLOW

data stores and sources/sinks. Figure H-
1 depicts a simple DFD. The inputs to
and outputs from a process are shown as
data flows. The processes represent the
transformation of data. The data stores
represent a time delayed repository of
data.
respectively, where the data required by

The sources/sinks show,

the system comes from and where the
data produced by the system goes.

1. | DATASTORE

I SINK

I3 N\ (207
|]
PROCESS CH—pIPROCESS ol
\)
CONNECTOR

TO OTHER

PROCESS

FIGURE H-1 EXAMPLE DATA FLOW DIAGRAM

APPENDIX |
FUNCTION CHART SYMBOLOGY

The function chart is a graphic
presentation of the partitioning of a
The
illustrates this
partitioning by showing function

software system into functions.
function chart
and

hierarchy, organization

communication. It is a major tool used

in software design. Itis derived from the _

data flow diagrams developed during
systems analysis. The function chart
portrays the software system in
manageable and meaningful partitions
that can be evaluated with quality
factors such as coupling and cohesion;
and other design guidelines such as

factoring, decision splitting, error

handling, editing, system structure,
information clustering, initialization,
termination, fan-in, fan-out and module
packaging. In a function chart, modules
are represented by a rectangle with an
identifier and descriptive title inside.
Functions are represented by a simple
rectangle. Connections between
modules and functions are represented
by lines joining them. The connection
usually means that the module has
“called” another to perform a function.
Figure I-1 depicts a simple function
chart. Figure I-2 defines function chart
symbols.

ID-1

MODULE - A
ID-2 — »
MODULE -8 FUNCTION - A FUNCTION -8B
yd
y 4
FUNCTION - C FUNCTION-D FUNCTION - E FUNCTION - F

FIGURE I-1 EXAMPLE FUNCTION CHART

CSC "N

IDENTIFIER

DESCRIPTIVE
TITLE

5 3
4

MODULE
5

MODULE
* VARIABLE"
6
MODULE
" CONDITION®
AN

IDENTIFIER 7

DESCRIP-
TIVE

TITLE

MODULE

A CONTIGUOUS SEQUENCE OF PROGRAM STATEMENTS BOUNDED BY BOUNDARY
S.EMENTS. HAVING AN AGGRECATE :DENTI®IER THE (SC"N” TAG IS USED AS &8,
INDEX TO TRACK THE CSC's STRUCTLRE ACROSS MULTIPLE PAGES

MODULE FUNCTION CALL

AN ARROW POINTING TO A MODULE OR FUNCTION DENOTES A REFERENCE TO THE
AGGREGATE IDENTIFIER OF THAT MODULE OR FUNCTION

TERATIVE INVOCATION (LOOP)

T—& MODULE FUNCTION REFERENCE ("CALL")1S IMBEDDED IN A LOOPING
PROCEDURE 1T MAY ENCLOSE ANY NUMBER OF MODULE s FUNCTION CALLS THE
+OOP CONDITION MAY BE WRITTEN TO THE SIDE OF THIS SYMBOL

SELECTION OR TRANSACTION CENTER (INCLUSIVE "OR")

THE MODULE FUNCTION CALL iSIMBEDDED IN A DECISION PROCEDURE. IT MAY
ENCLOSE ANY NUMBER OF MODULE - FUNCTION CALLS

EXCLUSIVE “OR* MODULE CALL

ONLY ONE SUB-MODULE OR SUB-FUNCTION iS CALLED DEPENDING UPON THE
VARIABLE VALUE

CONDITIONAL MODULE CALL

SUB-MODULE OR SUB-FUNCTION CALLED DEPENDING UPON BRANCHING
CONDITION

PREDEFINED MODULE

ANY PREDEFINED OR PREEXISTING MODULE

FIGURE I-2 FUNCTION CHART SYMBOLS

APPENDIX J
FLOWCHART SYMBOLOGY

The flowchart is a graphic
presentation of a software system that
employs symbols and interconnecting
lines to depict processing flow. The
symbols are used to denote processes and
operations, and arrowheads on the
interconnecting lines show the direction
of data flow and the sequence of
operations.

Figure J-1 defines all symbols used
in MPS flowcharts. Aside from the
minor exceptions noted below, these
symbols conform to Federal Information
Processing Standards (FIPS). Three
nonstandard flowcharting symbols are
employed in the MPS to provide superior

definition and to enhance clarity. Non-

standard symbols are used t» denote:

® Do locop boundaries. There is no
recognized standard for identifying
the scope of do loops. The symbology
used is simple and is in widespread
use at Kaman.

® Connector (In). The FIPS recognizes
a single connector. However, greater
clarity is achieved by using different
symbols for in, and out, connectors.

® Module call. The FIPS module call
symbol has been eschewed, in favor of
the indicated symbol, for MPS
application. The symbol employed
allows one to easily identify module
calls based ~n symbol shape.

Module entry or exit point. A point at which control is
pass=d to a module (ENTER), or a point at which a
module relinquishes control (RETURN).

Module process. Specification of an operation or
group of operations defined within the module.

Module call. Invocation of a named process _
ZsuBroutme) consisting of one or more operations or
steps specified elsewhere.

Decision. A pointin a module where several paths are
possible, and the path selected is dependent on the
state of a decision variable or variables.

Connector (Out). A junction in the line of flow used to
indicate passage of control to another part of the
module.

Connector (In). A junction in the line of flow used to
denote a point where control is assumed.

FIGURE J-1 FLOWCHART SYMBOLS

Display. I/0 function in which information is displayed
for Ia'iuman use at the time of processing.

Document. /O function in which information is output
to a hardcopy device.

\

Input/Output. The process of reading an input file or
writing an output file.

V

Processing flow.

r—-—-—ﬂ

Do loop boundary.

r—--—-
.

FIGURE J-1 FLOWCHART SYMBOLS (Concluded)

